• Title/Summary/Keyword: Lorentzian space-time

Search Result 8, Processing Time 0.021 seconds

CONFORMALLY RECURRENT SPACE-TIMES ADMITTING A PROPER CONFORMAL VECTOR FIELD

  • De, Uday Chand;Mantica, Carlo Alberto
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.319-329
    • /
    • 2014
  • In this paper we study the properties of conformally recurrent pseudo Riemannian manifolds admitting a proper conformal vector field with respect to the scalar field ${\sigma}$, focusing particularly on the 4-dimensional Lorentzian case. Some general properties already proven by one of the present authors for pseudo conformally symmetric manifolds endowed with a conformal vector field are proven also in the case, and some new others are stated. Moreover interesting results are pointed out; for example, it is proven that the Ricci tensor under certain conditions is Weyl compatible: this notion was recently introduced and investigated by one of the present authors. Further we study conformally recurrent 4-dimensional Lorentzian manifolds (space-times) admitting a conformal vector field: it is proven that the covector ${\sigma}_j$ is null and unique up to scaling; moreover it is shown that the same vector is an eigenvector of the Ricci tensor. Finally, it is stated that such space-time is of Petrov type N with respect to ${\sigma}_j$.

BETCHOV-DA RIOS EQUATION BY NULL CARTAN, PSEUDO NULL AND PARTIALLY NULL CURVE IN MINKOWSKI SPACETIME

  • Melek Erdogdu;Yanlin Li;Ayse Yavuz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1265-1280
    • /
    • 2023
  • The aim of this paper is to investigate Betchov-Da Rios equation by using null Cartan, pseudo null and partially null curve in Minkowski spacetime. Time derivative formulas of frame of s parameter null Cartan, pseudo null and partially null curve are examined, respectively. By using the obtained derivative formulas, new results are given about the solution of Betchov-Da Rios equation. The differential geometric properties of these solutions are obtained with respect to Lorentzian causal character of s parameter curve. For a solution of Betchov-Da Rios equation, it is seen that null Cartan s parameter curves are space curves in three-dimensional Minkowski space. Then all points of the soliton surface are flat points of the surface for null Cartan and partially null curve. Thus, it is seen from the results obtained that there is no surface corresponding to the solution of Betchov-Da Rios equation by using the pseudo null s parameter curve.