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BETCHOV-DA RIOS EQUATION BY NULL CARTAN,

PSEUDO NULL AND PARTIALLY NULL CURVE IN
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Abstract. The aim of this paper is to investigate Betchov-Da Rios
equation by using null Cartan, pseudo null and partially null curve in

Minkowski spacetime. Time derivative formulas of frame of s parameter

null Cartan, pseudo null and partially null curve are examined, respec-
tively. By using the obtained derivative formulas, new results are given

about the solution of Betchov-Da Rios equation. The differential geomet-
ric properties of these solutions are obtained with respect to Lorentzian

causal character of s parameter curve. For a solution of Betchov-Da Rios

equation, it is seen that null Cartan s parameter curves are space curves
in three-dimensional Minkowski space. Then all points of the soliton sur-

face are flat points of the surface for null Cartan and partially null curve.

Thus, it is seen from the results obtained that there is no surface corre-
sponding to the solution of Betchov-Da Rios equation by using the pseudo

null s parameter curve.

1. Introduction

The mathematical environment in which Einstein’s theory of special relativ-
ity is most simply expressed is called Minkowski space or Minkowski spacetime.
In this concept, a spacetime is represented by a four-dimensional manifold made
up of the three regular dimensions of space and one dimension of time.

The most natural way to see how space and time are intimately linked is in
a world representation with four dimensions, three spatial and one temporal,
as provided by mathematics. This goes beyond math; the physics just makes
more sense when viewed in four spatial dimensions with time as a parameter
than in three spatial dimensions alone.

Received September 19, 2022; Accepted March 16, 2023.
2020 Mathematics Subject Classification. Primary 35Q55, 53A05, 53Z05.
Key words and phrases. Betchov-Da Rios equation, localized induction equation (LIE),

null Cartan curve, pseudo null curve, partially null curve, Minkowski spacetime.
This work was funded by the National Natural Science Foundation of China (Grant

No. 12101168) and Zhejiang Provincial Natural Science Foundation of China (Grant No.

LQ22A010014).

©2023 Korean Mathematical Society

1265
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Minkowski space and Euclidean space are frequently compared in theoretical
physics. Minkowski space has one timelike dimension in addition to the space-
like dimensions that characterize Euclidean space. As a result, the Poincaré
group is the symmetry group for Minkowski space and the Euclidean group is
the symmetry group for Euclidean space.

In conventional methods to quantum gravity, specifying equal time commu-
tation relation is a natural application of the background causal structure. The
kinematical question of which events occur at equal times cannot be answered
without a background causal structure of some kind until the dynamical prob-
lem is resolved. Additionally, any idea of causation that results will probably
be unclear because the metric is itself. In this study, the Minkowski spacetime
metric is represented as follows:

⟨u, v⟩L = −u1v1 + u2v2 + u3v3 + u4v4

for all u, v ∈ E4
1. According to this metric, regular curves in Minkowski space-

time are classified.
The motion of the vortex filament is one of the research areas that both

mathematicians and physicists have been working on in recent years. The
foundations of the geometric relationship between the motion of the inexten-
sible curve and the soliton theory are based on the work of Da Rios in 1906
[5]. Levi Civita and Betchov both reexamined the significance of this work
of Da Rios [4, 10]. Hasimoto also shown how Betchov’s findings and nonlin-
ear Schrödinger equation are related [9]. There are studies that include both
physical and geometric applications of the solutions of nonlinear Schrödinger
equation [6, 7, 16].

Smooth and expressive, the thin filament does not intersect on its own. The
localized induction approximation, used by Da Rios, relates to the velocity
caused by a vortex line at an outside point (LIA). The following equation

(1) Ψt = Ψs ×Ψss ×Ψsss

is stated the movement of a curve in different kind of space as the movement of
a vortex in an inviscid fluid. This equation is also named as Betchov-Da Rios
(BDR) equation [1–3,8, 13,14,18–20].

In light of the geometric invariants and findings, soliton surface, which is
the solution to BDR equation in Euclidean space, is analyzed, and some of its
aspects are examined [12].

In [11], the geometric features of nonnull soliton surface related with BDR
equation in Minkowski spacetime are investigated. It is demonstrated in this
situation that the s parameter curves are nonnull for all t values of the soliton
surface. For all t, we give derivative formulas of Frenet-Serret frame of the s
parameter curves. The geometric structure of this nonnull soliton surface is
discussed, and some results such as the mean curvature vector field, linear map
of Weingarten type, Gaussian curvature and geometric invariants are presented.
The existence conditions of the flat points of this soliton surface are obtained.
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In this paper, we firstly give some brief information about null Cartan,
pseudo null and partially null curve in Minkowski spacetime. Then, we investi-
gate BDR equation by using null Cartan, pseudo null and partially null curve
in Minkowski spacetime. Time derivative formulas of frames of s parameter
null Cartan, pseudo null and partially null curve are examined, respectively.
Then, it is proved that derivatives of Cartan and pseudo null frames according
to time parameter t are all zero vectors. Moreover, it is obtained that deriva-
tives of partially null frames according to time parameter t are different from
zero vectors. The differential geometric properties of these solutions are ob-
tained with respect to the causal character of s parameter curve. For a solution
of BDR equation, it is seen that null Cartan s parameter curves lie on three
dimensional Minkowski space. Then all points of the soliton surface are flat
points of the surface for null Cartan and partially null curve. Thus, it is seen
from results obtained that there is no surface corresponding to the solution of
BDR equation by using pseudo null s parameter curve.

It is obtained in [11] that the s parameter curves of the nonnull soliton
surface were all nonnull curves. This study investigated the cases in which the
s parameter curves are, respectively, null Cartan, pseudo null, and partly null.
Because the characters of the s parameter curve of the soliton surface are null
rather than nonnull, different results have emerged. Unlike [11], all derivatives
of Cartan and pseudo null frames with respect to time parameter t are zero
vectors in this study. However, in addition to the results on the existence of
flat points which are presented in [11], it is seen that all points for null Cartan
and partial null curves were flat points. It is shown that there is no such soliton
surface which has the pseudo null s parameter curve.

2. Preliminaries

Derivative formulas of pseudo orthonormal frames are given as following
cases [15,17].

Case 1. Let α : I → E4
1 be a null Cartan curve. Then derivative formulas

of Cartan frame are given as follows:

(2)
d

ds


T
N1

N2

N3

 =


0 κ 0 0
−κ 0 τ 0
0 −τ 0 −σ
σ 0 0 0




T
N1

N2

N3

 ,

where Cartan frame fields satisfy the equations

⟨T, T ⟩L = ⟨N2, N2⟩L = ⟨N2, N3⟩L = 0,

⟨N3, N3⟩L = ⟨N1, N1⟩L = 1, ⟨T,N2⟩L = −1,(3)

⟨N1, N3⟩L = ⟨T,N1⟩L = ⟨T,N3⟩L = ⟨N1, N2⟩L = 0.

Moreover, the cross product of Cartan frame fields are obtained as follows:

T ×L N1 ×L N2 = −N3,
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T ×L N1 ×L N3 = −T,

T ×L N3 ×L N2 = N1,(4)

N1 ×L N2 ×L N3 = −N2.

Case 2. Let α : I → E4
1 be a pseudo null curve. Then derivative formulas

of pseudo null frame are given as follows:

(5)
d

ds


T
N1

N2

N3

 =


0 κ 0 0
0 0 τ 0
0 σ 0 −τ
−κ 0 −σ 0




T
N1

N2

N3

 ,

where T,N1, N2, N3 satisfy the equations

⟨T, T ⟩L = ⟨N1, N3⟩L = ⟨N2, N2⟩L = 1,

⟨N3, N3⟩L = ⟨N1, N1⟩L = ⟨T,N3⟩L = 0,(6)

⟨T,N1⟩L = ⟨T,N2⟩L = ⟨N1, N2⟩L = ⟨N2, N3⟩L = 0.

Case 3. Let α : I → E4
1 be a partially null curve. Then derivative formulas

of partially null frame are given as follows:

(7)
d

ds


T
N1

N2

N3

 =


0 κ 0 0
−κ 0 τ 0
0 0 σ 0
0 −τ 0 −σ




T
N1

N2

N3

 ,

where T,N1, N2, N3 satisfy the equations

⟨T, T ⟩L = ⟨N1, N1⟩L = ⟨N2, N2⟩L = 1,

⟨N3, N3⟩L = ⟨N2, N2⟩L = ⟨N2, N3⟩L = 0,(8)

⟨T,N1⟩L = ⟨T,N2⟩L = ⟨T,N3⟩L = ⟨N1, N2⟩L = 0.

3. BDR equation by using null Cartan curve

This section contains the examination of the soliton surface M : Ψ = Ψ(s, t)
associated with BDR equation by using derivative formulas for the Cartan
frame of the null Cartan s parameter curve of M.

3.1. Time derivative formulas of null Cartan frame

Theorem 3.1. Let’s assume that Ψ = Ψ(s, t) is a solution of BDR equation,
where Ψ = Ψ(s, t) is a null Cartan curve for every t. Then, derivatives of
Cartan frames according to time parameter t are all zero vectors.

Proof. The metric coefficient matrix is obtained as follows:

I∗ =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1


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by Eq. (3). We define semi skew symmetric matrix A by equation I∗AI∗+AT =
04×4. If we denote

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ,

then we get the following matrix equation
a11 + a33 a12 − a23 2a13 a14 − a43
a21 − a32 2a22 a23 − a12 a24 + a42

2a31 a32 − a21 a11 + a33 a34 − a41
a41 − a34 a24 + a42 a43 − a14 2a44

 = 04×4.

This implies

a11 = −a33 = ζ11, a12 = a23 = ζ12, a13 = 0,

a14 = a43 = ζ14, a21 = a32 = ζ21, a22 = 0,

a24 = −a42 = ζ24, a31 = 0, a34 = a41 = ζ34, a44 = 0.

There exist smooth functions: ζ11, ζ12, ζ14, ζ21, ζ24, and ζ34 such that

d

dt


T
N1

N2

N3

 =


ζ11 ζ12 0 ζ14
ζ21 0 ζ12 ζ24
0 ζ21 −ζ11 ζ34
ζ34 −ζ24 ζ14 0




T
N1

N2

N3

 .

These functions are needed to find in terms of the curvature functions κ, τ and
σ. By Eq. (2), we have

Ψs(s, t) = T (s, t),

Ψss(s, t) = N1(s, t),

Ψsss(s, t) = −T (s, t) + τ(s, t)N2(s, t).

By Eq. (4), BDR equation implies that

Ψt(s, t) = Ψs(s, t)×L Ψss(s, t)×L Ψsss(s, t)

= −N3(s, t).

Then, we obtain

∂

∂s
(Ψt(s, t)) =

∂

∂s
(−N3(s, t))

= −σ(s, t)T (s, t).

On the other hand, we have

∂

∂t
(Ψs(s, t)) =

∂

∂t
(T (s, t))

= ζ11(s, t)T (s, t) + ζ12(s, t)N1(s, t) + ζ14(s, t)N3(s, t).



1270 M. ERDOĞDU, Y. LI, AND A. YAVUZ

By compatibility condition Ψst = Ψts, we get

ζ11(s, t) = −σ(s, t),

ζ12(s, t) = 0,

ζ14(s, t) = 0.

By Tst = Tts, we find

∂

∂s
(Tt(s, t)) =

∂

∂s
(−σ(s, t)T (s, t))

= − ∂

∂s
σ(s, t)T (s, t)− σ(s, t)N1(s, t).

Furthermore, we also have

∂

∂t
(Ts(s, t)) =

∂

∂t
(N1(s, t))

= ζ21(s, t)T (s, t) + ζ24(s, t)N3(s, t).

This implies that

ζ24(s, t) = 0,

σ(s, t) = 0,

ζ21(s, t) = − ∂

∂s
σ(s, t) = 0.

From (N1)st = (N1)ts, we get

ζ34(s, t) = 0.

We find that all smooth functions: ζ11, ζ12, ζ14, ζ21, ζ24, and ζ34 are zero. Then,
we get derivatives of Cartan frames according to time parameter t are all zero
vectors. □

Corollary 3.2. Let’s assume that Ψ = Ψ(s, t) is a solution of BDR equation
where Ψ = Ψ(s, t) is a null Cartan curve for every t. Then we have

d

ds


T
N1

N2

N3

 =


0 κ 0 0
−κ 0 τ 0
0 −τ 0 0
0 0 0 0




T
N1

N2

N3

 .

Here {T,N1, N2, N3} is Cartan frame, κ is the curvature function, τ is the first
torsion function Ψ = Ψ(s, t) for all t.

Proof. By Tst = Tts, we obtain that σ(s, t) = 0 by proof of Theorem 3.1. □
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3.2. Surface associated with BDR equation by using null Cartan
curve

Let M : Ψ = Ψ(s, t) be a two-dimensional surface associated with BDR
equation. Then Tp(M) = span{Ψs = T, Ψt = −N3} is the tangent space of
surface M at arbitrary point P . Given that the quadruple {Ψs,Ψt, N1, N2} is
positively oriented frame in E4

1, Np(M) = span{N1, N2} is the normal space.
The resulting decomposition is as follows:

E4
1 = Tp(M)⊕Np(M).

The below explains how the metric tensor’s components are obtained:

g11(s, t) = ⟨T (s, t), T (s, t)⟩L = 0,

g12(s, t) = ⟨T (s, t),−N3(s, t)⟩L = 0,

g22(s, t) = ⟨−N3(s, t),−N3(s, t)⟩L = 1.

This means that

g11g22 − g212 = 0.

For normal frame field {N1, N2} of M, we have the second derivative formulas:

DΨs
Ψs = Ψss = Γ1

11Ψs + Γ2
11Ψt + c111N1 + c211N2,

DΨsΨt = Ψst = Γ1
12Ψs + Γ2

12Ψt + c112N1 + c212N2,

DΨt
Ψt = Ψtt = Γ1

22Ψs + Γ2
22Ψt + c122N1 + c222N2,

where Γk
ij are Christoffel’s symbols and ckij are functions on M for i, j, k = 1, 2.

However, we also have

Ψss(s, t) = N1(s, t), Ψst = 0, Ψtt = 0.

So, we get Christoffel’s symbols:

Γ1
11 = Γ2

11 = Γ1
12 = Γ2

12 = Γ2
22 = Γ1

22 = 0.

We obtain the functions ckij as follows:

c111 = 1, c211 = c112 = c212 = c122 = c222 = 0.

Due to the nondegenerate structure of the metric induced on M, i.e., c111 = 1,
at least one of the coefficients ckij is not zero. We get the second fundamental
tensor of M as follows:

Π(Ψs,Ψs) = N1, Π(Ψs,Ψt) = 0, Π(Ψt,Ψt) = 0.

The following functions are introduced:

∆1 = 0, ∆2 = 0, ∆3 = 0.

Since ∆1 = ∆2 = ∆3 = 0, all points of the soliton surface are flat points.
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Remark 3.3. We obtain that
∂

∂s
N3 =

∂

∂t
N3 = 0

by Theorem 3.1 and Corollary 3.2. This means that the vector field N3 of
s parameter curve Ψ = Ψ(s, t) should be totally constant vector for all t.
Therefore, for a solution Ψ = Ψ(s, t) of BDR equation, the fact that null
Cartan s parameter curve lies on three dimensional Minkowski space.

4. BDR equation by using pseudo null curve

In this section, solution Ψ̃ = Ψ̃(s, t) of BDR equation by using pseudo null
curve is investigated with obtaining derivative formulas of pseudo null s pa-
rameter curve of Ψ̃ = Ψ̃(s, t) for all t.

Since BDR equation is expressed using cross product, it is necessary to
obtain the cross product of pseudo null frame fields. Thus, the cross product
of pseudo null frame fields are obtained as follows:

T ×L N1 ×L N2 = N1,

T ×L N1 ×L N3 = −N2,(9)

T ×L N3 ×L N2 = N3,

N1 ×L N2 ×L N3 = −T

by relation ⟨T,N1 ×L N2 ×L N3⟩L = 1.

Theorem 4.1. Let’s assume that Ψ = Ψ(s, t) is a solution of BDR equation
where Ψ = Ψ(s, t) is a pseudo null curve for every t. Then, derivatives of
pseudo null frames according to time parameter t are all zero vectors.

Proof. By Eq. (6), the metric coefficient matrix is obtained as follows:

I∗ =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

We define semi skew symmetric matrix A = (aij) by equation I∗AI∗ + AT =
04×4. We get the following matrix equation

2a11 a21 + a14 a13 + a31 a12 + a41
a12 + a41 a22 + a44 a32 + a43 2a42
a13 + a31 a23 + a34 2a33 a32 + a43
a21 + a14 2a24 a23 + a34 a22 + a44

 = 04×4.

This implies

a11 = 0, a33 = 0, a24 = 0 a42 = 0,

a13 = −a31 = ζ̃13, a22 = −a44 = ζ̃22, a21 = −a14 = ζ̃21,

a32 = −a43 = ζ̃32, a23 = −a34 = ζ̃23, a12 = −a41 = ζ̃12.
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There exist smooth functions: ζ̃12, ζ̃13, ζ̃21, ζ̃22, ζ̃23, and ζ̃32 such that

d

dt


T
N1

N2

N3

 =


0 ζ̃12 ζ̃13 −ζ̃21
ζ̃21 ζ̃22 ζ̃23 0

−ζ̃13 ζ̃32 0 −ζ̃23
−ζ̃12 0 −ζ̃32 −ζ̃22




T
N1

N2

N3

 .

These functions must be found in terms of the curvature functions. By Eq. (5),
we find

Ψ̃s(s, t) = T (s, t),

Ψ̃ss(s, t) = N1(s, t),

Ψ̃sss(s, t) = τ(s, t)N2(s, t).

By Eq. (9), BDR equation implies that

Ψ̃t(s, t) = Ψ̃s(s, t)×L Ψ̃ss(s, t)×L Ψ̃sss(s, t)

= τ(s, t)N1(s, t).

By Ψ̃st = Ψ̃ts, we obtain

∂

∂s
(Ψ̃t(s, t)) =

∂

∂s
(τ(s, t)N1(s, t))

=
∂

∂s
τ(s, t)N1(s, t) + τ2(s, t)N2(s, t).

Moreover, we get

∂

∂t
(Ψ̃s(s, t)) =

∂

∂t
(T (s, t))

= ζ̃12(s, t)N1(s, t) + ζ̃13(s, t)N2(s, t)− ζ̃21(s, t)N3(s, t).

Then, we have

ζ̃12(s, t) =
∂

∂s
(τ(s, t)) ,

ζ̃13(s, t) = τ2(s, t),

ζ̃21(s, t) = 0.

By Tst = Tts, we have

∂

∂s
(Tt(s, t)) =

∂

∂s
(ζ̃12(s, t)N1(s, t) + ζ̃13(s, t)N2(s, t))

=

(
∂

∂s
ζ̃12(s, t) + ζ̃13(s, t)σ(s, t)

)
N1(s, t)

+

(
τ(s, t)ζ̃12(s, t) +

∂

∂s
ζ̃13(s, t)

)
N2(s, t)

− τ(s, t)ζ̃13(s, t)N3(s, t).
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Furthermore, we also have

∂

∂t
(Ts(s, t)) = ζ̃22(s, t)N1(s, t) + ζ̃23(s, t)N2(s, t).

According to this, we have

τ(s, t)ζ̃13(s, t) = 0,

ζ̃22(s, t) =
∂

∂s
ζ̃12(s, t) + ζ̃13(s, t)σ(s, t),

ζ̃23(s, t) = τ(s, t)ζ̃12(s, t) +
∂

∂s
ζ̃13(s, t).

By the above equations, we find that τ(s, t) = 0, ζ̃12(s, t) = 0, ζ̃13(s, t) = 0,

ζ̃22(s, t) = 0, and ζ̃23(s, t) = 0. Then, derivatives of frame fields according to
time parameter t are all zero vectors. □

Corollary 4.2. Let’s assume that Ψ = Ψ(s, t) is a solution of BDR equation
where Ψ = Ψ(s, t) is a pseudo null curve for every t. Then the followings are
obtained

d

ds


T
N1

N2

N3

 =


0 κ 0 0
0 0 0 0
0 σ 0 0
−κ 0 −σ 0




T
N1

N2

N3

 .

Proof. By compatibility conditions, we obtain that τ(s, t) = 0 by proof of
Theorem 4.1. □

Remark 4.3. We obtain that

τ(s, t) = 0.

By Theorem 4.1 and Corollary 4.2, we have

d

dt
Ψ̃(s, t) = 0.

Thus, it is seen from results obtained that there is no surface corresponding to
the solution of BDR equation by using pseudo null s parameter curve.

5. BDR equation by using partially null curve

This section examines the soliton surface M : Ψ̄ = Ψ̄(s, t) which is a solution
of BDR equation by using partially null s parameter curve Ψ̄ = Ψ̄(s, t) for all
t. Then, we get the cross product of partially null frame vectors as follows:

T ×L N1 ×L N2 = N2,

T ×L N1 ×L N3 = −N3,(10)

T ×L N3 ×L N2 = −N1,

N1 ×L N2 ×L N3 = −T

by the relation ⟨T,N1 ×L N2 ×L N3⟩L = 1.
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5.1. Time derivative formulas of partially null frame

Theorem 5.1. Let’s assume that Ψ = Ψ(s, t) is a solution of BDR equation,
where Ψ = Ψ(s, t) is a partially null curve for every t. Then we have the
following equations

d

dt


T
N1

N2

N3

 =


0 0 ζ̄13 0
0 0 ζ̄23 0
0 0 ζ̄33 0

−ζ̄13 −ζ̄23 0 −ζ̄33




T
N1

N2

N3

 ,

where

ζ̄13(s, t) =
∂

∂s
τ(s, t) + τ(s, t)σ(s, t),

ζ̄23(s, t) =
∂

∂s
ζ̄13(s, t) + ζ̄13(s, t)σ(s, t),

ζ̄33(s, t) =
1

τ(s, t)
[
∂

∂s
ζ̄23(s, t) + ζ̄23(s, t)σ(s, t)−

∂

∂s
τ(s, t)ζ̄13(s, t)].

Proof. By Eq. (8), the metric coefficient matrix is obtained as follows:

I∗ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

We define semi skew symmetric matrix A = (aij) by equation I∗AI∗ + AT =
04×4. We get the following matrix equation

2a11 a12 + a21 a13 + a41 a31 + a14
a12 + a21 2a22 a23 + a42 a32 + a24
a31 + a14 a32 + a24 a33 + a44 2a34
a13 + a41 a23 + a42 2a43 a33 + a44

 = 04×4.

This implies

a11 = 0, a12 = −a21 = ζ̄12, a13 = −a41 = ζ̄13, a34 = 0,

a31 = −a14 = ζ̄31, a23 = −a42 = ζ̄23, a22 = 0, a43 = 0,

a24 = −a42 = ζ̄24, a33 = −a44 = ζ̄33.

There exist smooth functions; ζ̄12, ζ̄13, ζ̄31, ζ̄23, ζ̄24, and ζ̄33 such that

d

dt


T
N1

N2

N3

 =


0 ζ̄12 ζ̄13 −ζ̄31

−ζ̄12 0 ζ̄23 ζ̄24
ζ̄31 −ζ̄24 ζ̄33 0
−ζ̄13 −ζ̄23 0 −ζ̄33




T
N1

N2

N3

 .

These functions are needed to find in terms of the curvature functions. By
Eq. (7), we have

Ψ̄s(s, t) = T (s, t),



1276 M. ERDOĞDU, Y. LI, AND A. YAVUZ

Ψ̄ss(s, t) = N1(s, t),

Ψ̄sss(s, t) = −T (s, t) + τ(s, t)N2(s, t).

By using Eq. (10), BDR equation implies that

Ψ̄t(s, t) = Ψ̄s(s, t)×L Ψ̄ss(s, t)×L Ψ̄sss(s, t)

= τ(s, t)N2(s, t).

By Ψ̄st = Ψ̄ts, we obtain

∂

∂s
(Ψ̄t(s, t)) =

∂

∂s
(τ(s, t)N2(s, t))

=
∂

∂s
τ(s, t)N2(s, t) + τ(s, t)σ(s, t)N2(s, t)

= (
∂

∂s
τ(s, t) + τ(s, t)σ(s, t))N2(s, t).

Then, we get

∂

∂t
(Ψ̄s(s, t)) =

∂

∂t
(T (s, t))

= ζ̄12(s, t)N1(s, t) + ζ̄13(s, t)N2(s, t)− ζ̄31(s, t)N3(s, t).

Thus, we have

ζ̄12(s, t) = 0,

ζ̄13(s, t) =
∂

∂s
τ(s, t) + τ(s, t)σ(s, t),

ζ̄31(s, t) = 0.

By Tst = Tts, we find

∂

∂s
(Tt(s, t)) =

∂

∂s
(ζ̄13(s, t)N2(s, t))

=
∂

∂s
ζ̄13(s, t)N2(s, t) + ζ̄13(s, t)σ(s, t)N2(s, t)

= (
∂

∂s
ζ̄13(s, t) + ζ̄13(s, t)σ(s, t))N2(s, t).

Moreover, we obtain

∂

∂t
(Ts(s, t)) =

∂

∂t
(N1(s, t))

= ζ̄23N2(s, t) + ζ̄24(s, t)N3(s, t).

Thus, we get

ζ̄23(s, t) =
∂

∂s
ζ̄13(s, t) + ζ13(s, t)σ(s, t),

ζ̄24(s, t) = 0.
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By (N1)st = (N1)ts, we have

∂

∂s
(N1t(s, t)) =

∂

∂s
(ζ̄23N2(s, t))

=
∂

∂s
ζ̄23(s, t)N2(s, t) + ζ̄23(s, t)σ(s, t)N2(s, t)

= (
∂

∂s
ζ̄23(s, t) + ζ̄23(s, t)σ(s, t))N2(s, t).

Furthermore, we also have

∂

∂t
(N1s(s, t)) =

∂

∂t
(−T (s, t) + τ(s, t)N2(s, t))

= −ζ̄13(s, t)N2(s, t) +
∂

∂t
τ(s, t)N2(s, t) + τ(s, t)ζ̄33(s, t)N2(s, t)

= (−ζ̄13(s, t) +
∂

∂t
τ(s, t) + τ(s, t)ζ̄33(s, t))N2(s, t).

This implies that

∂

∂s
ζ̄23(s, t) + ζ̄23(s, t)σ(s, t) = −ζ̄13(s, t) +

∂

∂t
τ(s, t) + τ(s, t)ζ̄33(s, t).

Thus, it is found

ζ̄33(s, t) =
1

τ(s, t)
[
∂

∂s
ζ̄23(s, t) + ζ̄23(s, t)σ(s, t)−

∂

∂s
τ(s, t)ζ̄13(s, t)]. □

5.2. Surface associated with BDR equation by using partially null
curve

Let M : Ψ̄ = Ψ̄(s, t) be a two-dimensional surface associated with BDR
equation. Then Tp(M) = span{Ψ̄s = T, Ψ̄t = τN2} is the tangent space of
surface M at arbitrary point P . Given that the quadruple {Ψ̄s, Ψ̄t, N1, N3} is
positively oriented frame in E4

1, Np(M) = span{N1, N3} is the normal space.
The resulting decomposition is as follows

E4
1 = Tp(M)⊕Np(M).

The metric tensor’s components are as follows:

g11 = ⟨T (s, t), T (s, t)⟩L = 1,

g12 = ⟨T (s, t), τ(s, t)N2(s, t)⟩L = 0,

g22 = ⟨τ(s, t)N2(s, t), τ(s, t)N2(s, t)⟩L = 0.

Therefore, we obtain
g11g22 − g212 = 0.

For normal frame fields {N1, N3} of M, we have second derivative formulas

DΨ̄s
Ψ̄s = Ψ̄ss = Γ1

11Ψ̄s + Γ2
11Ψ̄t + c111N1 + c211N3,

DΨ̄s
Ψ̄t = Ψ̄st = Γ1

12Ψ̄s + Γ2
12Ψ̄t + c112N1 + c212N3,

DΨ̄t
Ψ̄t = Ψ̄tt = Γ1

22Ψ̄s + Γ2
22Ψ̄t + c122N1 + c222N3,
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where Γk
ij are Christoffel’s symbols and ckij are functions on M for i, j, k = 1, 2.

Then, we have

Ψ̄ss(s, t) = N1(s, t),

Ψ̄st(s, t) = (
∂

∂s
τ(s, t) + τ(s, t)σ(s, t))N2(s, t),

Ψ̄tt(s, t) = (
∂

∂t
τ(s, t) + τ(s, t)ζ̄33(s, t))N2(s, t).

Thus, we find Christoffel’s symbols as follows:

Γ1
11 = Γ2

11 = Γ2
12 = Γ2

22 = Γ1
22 = 0,

Γ1
12(s, t) =

1

τ(s, t)
(
∂

∂s
τ(s, t)) + σ(s, t),

Γ2
22(s, t) =

1

τ(s, t)
(
∂

∂t
τ(s, t)) + ζ̄33(s, t).

Finally, we obtain the functions ckij as follows:

c111 = 1,

c211 = c112 = c212 = c122 = c222 = 0.

The metric induced on M is nondegenerate because at least one of the
coefficients ckij is not zero, which means that c111 = 1. We get the second
fundamental tensor of M as follows:

Π(Ψs,Ψs) = N1(s, t), Π(Ψs,Ψt) = 0, Π(Ψt,Ψt) = 0.

The following functions are introduced:

∆1 = 0, ∆2 = 0, ∆3 = 0.

Since ∆1 = ∆2 = ∆3 = 0, all points of the soliton surface are flat points.

References

[1] M. Barros, A. Ferrández, P. Lucas, and M. Meroño, Hopf cylinders, B-scrolls and soli-
tons of the Betchov–Da Rios equation in the three-dimensional anti-de Sitter space, C.

R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 4, 505–509.

[2] M. Barros, A. Ferrández, P. Lucas, and M. Meroño, Solutions of the Betchov–Da Rios
soliton equation: a Lorentzian approach, J. Geom. Phys. 31 (1999), no. 2-3, 217–228.

https://doi.org/10.1016/S0393-0440(99)00005-4

[3] M. Barros, A. Ferrández, P. Lucas, and M. Meroño, Solutions of the Betchov-Da Rios
soliton equation in the anti-de Sitter 3-space, New Approaches in Nonlinear Analysis,

Hadronic Press, Palm Harbor, 1999.
[4] R. Betchov, On the curvature and torsion of an isolated vortex filament, J. Fluid Mech.

22 (1965), 471–479. https://doi.org/10.1017/S0022112065000915

[5] L. S. Da Rios, Sul moto d’un liquido indefinito con un filetto vorticoso di forma

qualunque, Rendiconti del Circolo Matematico di Palermo (1884-1940) 22 (1906), no. 1,
117–135.

https://doi.org/10.1016/S0393-0440(99)00005-4
https://doi.org/10.1017/S0022112065000915


BETCHOV-DA RIOS EQUATION 1279
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