• 제목/요약/키워드: Loop-pipe

검색결과 167건 처리시간 0.029초

Effect of Air Gap Thickness on Top Heat Loss of a Closed-loop Oscillating Heat Pipe Solar Collector

  • Nguyen, Kim-Bao;Choi, Soon-Ho;Yoon, Doo-Ho;Choi, Jae-Hyuk;Oh, Cheol;Yoon, Seok-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권7호
    • /
    • pp.994-1002
    • /
    • 2009
  • In this paper, effect of air gap thickness between absorber plate and glass cover on top heat loss of a closed loop oscillating heat pipe (CLOHP) solar collector was investigated. The CLOHP, which is made of copper with outer diameter of 3.2mm and inner diameter of 2.0mm, comprises 8 turns with heating, adiabatic and cooling section. The heating section of the heat pipe was attached to absorber plate which heated by solar simulator simulated by halogen lamps. The cooling section of the heat pipe was inserted into collector's cooling section that made of transparent acrylic. Temperatures of absorber plate, glass cover, and ambient air measured by K-type thermocouple and were recorded by MV2000-Yokogawa recorder. Top heat loss coefficients and top heat loss of the collector corresponding to some cases of air gap thickness were determined. The result of experiment shows the optimal air gap thickness for minimum top heat loss of this solar collector.

선형 압축기의 동적 거동 예측 Simulation Tool 개발 (Development of Simulation Tool for Dynamic Behavior of a Linear Compressor)

  • 전수홍;정의봉;이효재;김당주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.476-483
    • /
    • 2009
  • A linear compressor used in a refrigerator has higher energy efficiency than a reciprocating compressor, but its vibration level is still severe than others. The vibration level of linear compressor at the frequency of 60Hz is dominant since it is the exciting frequency of a motor. In this paper, a simulation tool to predict the shell vibration of the linear compressor was developed. The shell and body parts in a compressor were assumed to be 3-dimensional rigid body having both translational and rotational motion, while the reciprocating piston part has only 1-dimensional translational motion. The flexible loop-pipe was modeled by in-house code of finite element method. To verify the developed tool, five cases of different loop-pipe shapes were examined experimentally. The results by the developed tool showed good agreements with those by experiments.

다공성소결윅구조에 따른 루프 히트파이프에서 압력손실의 이론적 분석 (Theoretical Analysis of the Pressure Drop in Loop Heat Pipe by Sintered Porous Wick Structure)

  • 이기우;이욱현;박기호;이계중;전원표;인현만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1225-1230
    • /
    • 2004
  • In this paper, the pressure drops were investigated according to the sintered porous wick structure in loop heat pipe(LHP) by theoretical analysis. LHP has the wick only in evaporator for the circulation of working fluid, so utilizes porous wick structure which pore diameter is very small for large capillary force. This paper investigates the effects of different parameters on the pressure drops of the LHP such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity. Working fluid is water and the material of sintered porous wick is copper. According to the these different parameters, capillary pressure, pressure drop in wick were analized by theoretical design method of LHP.

  • PDF

A STUDY ON HEAT TRANSFER THROUGH THE FIN-WICK STRUCTURE MOUNTED IN THE EVAPORATOR FOR A PLATE LOOP HEAT PIPE SYSTEM

  • ;성병호;최지훈;유정현;서민관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2137-2143
    • /
    • 2008
  • This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components.

  • PDF

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • 제1권1호
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발 (Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation)

  • 김영진;허남수;차헌주;최재붕;표창률
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

소결금속 윅과 메탄올을 사용하며 바이패스라인이 부착된 루프히트파이프의 작동 특성 (Operating Characteristics of a Sintered-Metal Wick/Methanol Loop Heat Pipe Having a Bypass Line)

  • 부준홍;정의국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2130-2135
    • /
    • 2007
  • Operating characteristics of a loop heat pipe (LHP) having a bypass line was investigated experimentally. The LHP had a sintered metal wick as a capillary structure and methanol as a working fluid. The sintered metal wick was made of stainless steel of which the average pore size was 5 ${\mu}m$and porosity of 47%. A bypass line of a small diameter was attached between the vapor escape passage and the liquid reservoir. The dimension of the flat evaporator was $50(L){\times}40(W){\times}30(H)$ mm and that of the condenser was $50(L){\times}40(W){\times}11(H)$ mm. Wall and pipe material of the LHP was stainless steel and heating area was 35(W) mm${\times}$35(L) mm. The inner diameters of vapor and liquid transport lines were 4.0 mm and 2.0 mm, and the lengths of the two lines were both 0.5 m. The LHP was tested for three different tilt angles of horizontal, favorite tilt, and adverse tilt. The thermal load range was up to 290 W at the condenser above evaporation position. Furthermore, the effect of a bypass line on the start-up transient as well as steady-state operation was presented and discussed.

  • PDF

Optimization of a radiator for a MPFL system in a GEO satellite

  • Afshari, Behzad Mohasel;Abedi, Mohsen;Shahryari, Mehran
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.701-709
    • /
    • 2017
  • One of the components that used in the satellite thermal control subsystem is the Mechanically Pumped Fluid Loop (MPFL) system; this system mostly used in geosynchronous orbit (GEO) satellites, and can transfer heat from a hot point to a cold point using the fluid which circulated in a closed loop. Heat radiates to the deep space at the cold plate to cool down the fluid temperature. In this research, the radiative heatexchanger (RHX) for a MPFL system is optimized. The genetic algorithm has been used for minimizing the total mass and pressure drop by considering a constant transferred heat rate at the heat exchanger. The optimization has been done in two cases. In case I, two parameters are considered as a goal function, so optimization is performed using NSGA-II method. Results of optimization are shown in the pareto diagram. In case II, the diameter of pipe is considered constant, so the optimized value for distances of the parallel pipes is obtained by using the genetic algorithm, in which the system has the least total mass. Results show that in the RHX, by increasing the pipe diameter, pressure drop decreases and total mass increases. Also by considering a constant value for pipe diameter, an optimum distance between pipes and pipe length are obtained in which the system has a minimum mass.

Non-inverted Meniscus식 모세관 구조물을 이용한 소형 루프히트파이프에 관한 실험적 연구 (A Study on the Miniature Loop Heat Pipe with Non-inverted Meniscus type Capillary Structure)

  • 정원복;박수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2142-2147
    • /
    • 2007
  • Experimental study was conducted to evaluate the performance of a miniature loop heat pipe (MLHP) with non-inverted meniscus type capillary structure. All parts of MLHP in this study were made of copper including the capillary structure and the distilled water was used as a working fluid of MLHP. The outer diameter of evaporator was 9 mm and its length was 119 mm. The effective pore size of the capillary structure was 30 micron and its porosity was 60%. The vapor transport line, the liquid transport line and the condenser were consisted of single 4.0 mm copper tube. The distance between the evaporator and the condenser region was 200 mm and the length of the loop was 969 mm. This MLHP was operated successfully at any orientation but the gravity highly influenced the thermal performance of the MLHP. The maximum thermal load was 130 watts at the bottom heat mode and the 20 watts at the top heat mode.

  • PDF

마이크로 세라믹 윅을 사용한 루프 히트파이프의 특성 연구 (Characteristic Studies on Loop Heat Pipe with Micro Ceramic Wick)

  • 박종찬;이충구;이석호
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.823-831
    • /
    • 2007
  • This paper presents the experimental and simulation study of a loop heat pipe (LHP) that can be applied to present electronics, space missions and thermal control systems. The present experimental study was carried out employing sintered alumina ceramic wick ($d=2.96\;{\mu}m$, ${\phi}=0.61$). High purity R-134a, R-22 and water were also used as alternative working fluids in addition to ammonia. The experimental study showed that the maximum heat transfer performance for the test LHP in the vertical top heating mode was over 100 Watts when ammonia was used as the working fluid. The simulation results have been compared with the experimental results to validate a simulation model based on the thermal resistance network that was developed to evaluate the performance of LHPs, focusing on their prospective applications in electronics. The simulation model is based on the loop overall energy, mass, and momentum balance. The simulation program can predict the effects of various parameters which affect the performance of LHP within 5% compared with the experimental results.