• 제목/요약/키워드: Loop heat pipe

검색결과 98건 처리시간 0.028초

Bubble Jet Loop Heat Pipe의 유동 가시화 (Flow Visualization of Bubble Jet Loop Heat Pipe)

  • 이현직;공상운;하수정;황종호;장정완;손길재;김종수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.279-283
    • /
    • 2009
  • Bubble jet loop heat pipe is what heat pipe operate in the horizontality. It is consist of one heating part creating bubble and one rounded U tube type radiator. This study shows whether the heat pipe operates well in the horizontality or not, and what optimized refrigerant charging rate is in the tube. But flow visualization of bubble jet heat pipe was not known. The purpose of this study is to visualize bubble jet loop heat pipe. The experiment was performed by changes of charging rate. Working fluid was R-141b. And heater of 220 V & 100 W was used. we take a photograph of flow visualization of bubble jet loop heat pipe in slow motion.

  • PDF

냉각수 순환 형태의 파이프 쿨링 공법을 이용한 매스콘크리트 수화열 제어 (Hydartion Heat Control with Closed Loop Pipe Cooling System)

  • 박찬규;손상현;이승훈;장기욱;정재홍;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.403-408
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. However, open pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance result of hydration heat control with closed loop pipe cooling system.

  • PDF

Bubble Jet을 이용한 Loop Heat Pipe의 개발 (Development of Loop Heat Pipe Using Bubble Jet)

  • 공상운;하수정;장정완;황종호;손길재;이현직;김종수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1503-1506
    • /
    • 2009
  • Bubble jet loop heat pipe is a newly devised variation of heat pipe in which heat is effectively transported by the latent heat of evaporation and condensation as well as the heat capacity of circulating working fluid. The circulatory and oscillating motion of the working fluid becomes possible by the motion of bubble jet which is generated at a narrow circular gap. These bubbles are condensed at the condensing section. Bubble jet loop heat pipe makes it possible to carry heat long distances upward and horizontal directions. Because Its structure is a very simple and a low cost, it is available for the floor heating, vinyl house heating, the defrosting of heat pump system and home refrigerator.

  • PDF

냉각수 순환 형태의 파이프 쿨링 공법의 설계 (Design of Closed Loop Pipe Cooling System)

  • 박찬규;왕인수;구자중
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.52-57
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. The pipe cooling method leads to the decrease of curing period by lagging materials as well as the decrease of temperature difference between center and surface of mass concrete member, There are two methods in the pipe cooling system, which are open loop system and closed loop system. However open loop pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation in the central area of city, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance results of hydration heat control with closed loop pipe cooling system.

  • PDF

R141b를 이용한 루프 세관형 히트파이프의 열전달특성 (Heat Transfer Characteristics of Loop Type Capillary Heat Pipe using R141b as a Working Fluid)

  • 김훈;하승만;김탁용;전경환;최재혁;윤석훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.256-257
    • /
    • 2005
  • This paper has been carried out to investigate heat transfer characteristics of loop type capillary heat pipe using R141b as a working fluid. In an experiment heat load are changed from 50W to 250W and the temperature of cooling water is fixed to 20$^{circ}C$ . The heat pipe is composed of 10 turns and outer diameter of heat pipe is 3.2mm. The results show that heat transport rate of this type heat pipe using R141b as a working fluid is good.

  • PDF

루프형 세관 히트 파이프의 열전달특성에 관한 연구 (A Study on the Heat Transfer Characteristics of Loop Type Capillary Heat Pipe)

  • 윤석훈;최재혁
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, heat transfer characteristics of a loop type capillary heat pipe were experimentally investigated for the effect of several fill charge ratios of working fluid and heat loads. This type of heat pipe consists of a heating section, a cooling section and an adiabatic section. The heat pipe used has a 0.002m internal diameter, a 0.34m length in one turn and consists of 19 turns. Heating and cooling sections each have a length of 70mm. Experiments were performed to measure the temperature distributions and the pressure variation of the heat pipe. Heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients were calculated for various operating conditions of heat pipe and it was found that heat transfer characteristics of this type heat pipe were very excellent. As shown by this experimental study, this type of heat pipe operates by oscillatory flow caused by pressure and temperature oscillations.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

지중 열교환기의 순환수에 의한 열응력 및 열전달 거동 분석 (Analysis of thermal stress and heat transfer due to circulating fluid in ground heat exchanger)

  • 길후정;이강자;이철호;최항석;최효범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.385-395
    • /
    • 2009
  • In this study, a series of numerical analysis has been accomplished on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) in a geothermal heat pump system (GHP) considering the circulating fluid, pipe, grout and soil formation. A finite element analysis program, ABAQUS, was employed to evaluate the temperature distribution on the cross section of the U-loop system involving HDPE pipe/grout/formation and to compare sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system. Especially, the latticed pipe is equipped with a thermal insulation zone in order to reduce thermal interference between the inflow pipe and the outflow pipe. Also, a thermal stress analysis was performed with the aid of ABAQUS. 3-D finite volume analysis program, FLUENT, was adapted to analyze a coupled system between fluid circulation in the pipe and heat transfer and simulate an operating process of the closed-loop vertical ground heat exchanger. In this analysis, the effect of the thermal properties of grout, rate of circulation pump, distance between the inflow pipe and the outflow pipe, and the effectiveness of the latticed HDPE pipe system are taken into account.

  • PDF

파이프 순환수의 수치해석 모사를 통한 수직 밀폐형 지중열교환기 단면의 열전달 효율 평가 (Numerical Evaluation of Heat Transfer un Ground Heat Exchanger Considering Flow through U-loop)

  • 길후정;이강자;이철호;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.583-587
    • /
    • 2009
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of the thickness of HDPE pipe and grout thermal properties, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

지중열교환기의 고밀도폴리에틸렌 배관 형상에 따른 열전달 성능 특성에 대한 수치해석적 연구 (Numerical Analysis on the Heat Transfer Characteristics of HDPE Pipe with the Variation of Geometries for Ground Loop Heat Exchangers)

  • ;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.33-39
    • /
    • 2016
  • A ground source heat pump (GSHP) system is recommended as a heating and cooling system to solve the pending energy problem in the field of air conditioning, because it has the highest efficiency. However, higher initial construction cost works as a barrier to the promotion and dissemination of GSHP system. In this study, numerical analysis on the characteristics of high density polyethylene (HDPE) pipe with spiral inside was executed. The heat transfer and flow characteristics of it were compared with those of a conventional smooth HDPE pipe. The heat transfer coefficient and pressure drop of the spiral HDPE pipe were higher than those of the smooth HDPE pipes at the same fluid flow rate. By decreasing the flow rate, the spiral HDPE pipe represented similar values of heat transfer coefficient and pressure drop to the smooth HDPE pipe. The lower flow rate of the spiral HDPE pipe comparing with it of the smooth HDPE pipe is estimated to reduce the length of the ground loop heat exchanger.