• Title/Summary/Keyword: Longitudinal ultrasonic

Search Result 175, Processing Time 0.035 seconds

A Study of the Detection for Underclad Cracks of Nuclear Pressure Vessel (원자력 압력용기의 피복하부 결함검출에 대한 고찰)

  • Park, C.S.;Ahn, H.S.;Park, J.H.;Park, K.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.42-49
    • /
    • 1989
  • It has not been performed to inspect the underclad cracking in Korea nuclear plant since there is no Code Requirements for inspection. However, underclad cracks in nuclear pressure vessels were reported firstly in 1970. The objection of this study is to be established the ultrasonic inspection techniques for underclad cracking. The ultrasonic inspection of bimetalic stainless steel weld is very difficult by high attenuation and multiple scattering at weld surface and weld/base metal interface. The various inspection methods using $70^{\circ}$ refracted longitudinal wave, 50/70 tandem transducer, $45^{\circ}\;and\;60^{\circ}$ single shear wave are compared. Experiments on limited specimens applied same condition to nuclear pressure vessels shows that $70^{\circ}$ refracted longitudinal wave method is the best one for the detection of underclad cracks. 50/70 tandem transducer using SPOT(Satellite Pulse Observation Technique) is more effective for underclad crack sizing than other sizing methods.

  • PDF

Modeling of Soldering Proess using Longitudinal Thermosonic Method (종방향 열초음파 방법을 이용한 솔더링 공정의 모델링)

  • 김정호;이지혜;유중돈;최두선
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.224-227
    • /
    • 2003
  • The longitudinal thermosonic bonding method is investigated in this work for its application to the soldering process for electronic packaging. The effect of the ultrasonic is analyzed through lumped modeling, and the material properties of a viscoelastic model are measured experimentally. The thermosonic bonding method is verified by inserting the Cu pin and Au bump into solder block. As the solder thickness decreases, temperature of the solder is calculated to increase rapidly because of larger strain. Localized heating due to ultrasonic vibration is observed to melt the solder near the pin, which is adequate to the high density electronic package and Pb-free solder having high melting temperature.

  • PDF

Application of Thin-Walled Tubes Using Guided Wave (유도초음파를 이용한 대구경 배관 적용에 관한 연구)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • A method to test thin-walled tubes by guided ultrasonic wave is reported. The principle is that applicate two types of axially symmetric ultrasonic tube modes and "longitudinal" modes with particle displacement, which is coupled in axial and radial directions for transverse failures and torsional modes, oscillating in the circumferential direction only, for longitudinal failures. Both types of modes propagate along the tube in the axial direction. Therefore, a pulse-echo technique is possible. The pulses are excited and received at one end of the tube without contact electro-dynamic transducers. As soon as the tubes is put into a transducer coil at one end, the test of the whole tube can be accomplished in a few milliseconds. It is not necessary to rotate and transport the tubes during the test.

  • PDF

Nondestructive Evaluation for Thermally Degraded Co-base Superalloy by Scanning Acoustic Microscope (초음파현미경을 이용한 Co 기 초내열 합금 열화재의 비파괴평가)

  • Kim, Chung-Seok;Song, Jin-Hun;Kwon, Sook-In;Lim, Jea-Seang;Park, Ik-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.336-341
    • /
    • 2004
  • This research investigates the feasibility of ultrasonic microscope for nondestructive assessment of thermal degradation in artificially aged commercial Co-base superalloy, FSX414. This alloy has been used for high temperature structure applications such as stationary gas turbine blade and nozzle chamber in fossil plant. Microstructural change was found that the fine carbides became coarser and spheroidized in matrix as aging time increased. The leaky surface acoustic wave velocity gradually decreases by a maximum of 4.7% with increasing aging time up to 4,000hours. However, the longitudinal wave velocity has a little change. Also, it has a good correlation between leaky surface acoustic wave velocity and Vickers hardness. Consequently, LSAW can be used to examine the degree of degradation in thermally aged Co-base superalloy.

  • PDF

FEM Analysis on the Characteristics of Piezoelectric Ceramics Using $L_{1}-B_{4}$ Vibration mode ($L_{1}-B_{4}$ 진동모드를 이용하는 압전 세라믹스의 유한요소 해석)

  • 김범진;정동석;김태열;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.393-397
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramics element as a driving element. That is, L$_1$-B$_4$ linear ultrasonic motor can be constructed using a multi-mode vibrator of longitudinal and bending modes. The simulation with variation of material characteristics of piezoceramic were performed as use of finite element analysis ANSYS 5.5, such as elastic compliance, piezoelectric constant, electro-mechanical coupling coefficient, poisson's ratio and density. The results of simulation, elastic compliance constant s$_{11}$ and piezoelectric constant d$_{31}$ had the most of influence on the elliptic-motion. This results consist with using transverse effect of material. The used motor were piezoceramics of 4 layers, and the dimensions were 65$\times$5$\times$3.5mm(LxWxt).).

  • PDF

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

FEM Model-Based Investigation of Ultrasonic TOFD for Notch Inspection

  • Tang, Ziqiao;Yuan, Maodan;Wu, Hu;Zhang, Jianhai;Kim, Hak-Joon;Song, Sung-Jin;Kang, Sung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • A two-dimensional numerical model based on the finite element method was built to simulate the wave propagation phenomena that occur during the ultrasonic time of flight diffraction (TOFD) process. First, longitudinal-wave TOFD was simulated, and the numerical results agreed well with the theoretical results. Shear-wave TOFD was also investigated because shear waves have higher intensity and resolution. The shear wave propagation was studied using three models with different boundary conditions, and the tip-diffracted shear-to-longitudinal wave was extracted from the A-scan signal difference between the cracked and non-cracked specimens. This signal showed very good agreement between the geometrical and numerical arrival times. The results of this study not only provide better understanding of the diffraction phenomena in TOFD, but also prove the potential of shear-wave TOFD for practical application.

Change in Ultrasonic Characteristics with Isothermal Heat Treatment of 2.25Cr-1Mo Steel (등온열처리에 따른 2.25Cr-1Mo강의 초음파 특성 변화)

  • Nam, Young-Hyun;Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.353-358
    • /
    • 2013
  • The ultrasonic characteristics of 2.25Cr-1Mo steel were investigated in relation to the isothermal heat treatment temperature and time. Charpy impact tests and hardness tests were conducted on individual specimens with three different heat treatment conditions. A pulse-echo method with longitudinal waves was used to measure the attenuation and velocity of ultrasonic waves. The FATT (fracture appearance transition temperature) increased with an increase in the isothermal heat treatment time, which implies that the toughness decreased. As the isothermal heat treatment time and temperature increased, the longitudinal wave velocity and ultrasonic attenuation coefficient were raised.

Detection of Hydride Blisters in Zirconium Pressure Tubes using Ultrasonic Mode Conversion and Velocity Ratio Method (초음파 모드 변환 및 속도비 방법에 의한 지르코늄 압력관의 수소화물 블리스터 탐지)

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Young-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.334-341
    • /
    • 2003
  • When the pressure tubes(f are in contact with the calandria tube(CT) in the pressurized heavy water reactor(PHWR), the temperature difference between inner and outer wall of W results in a thermal diffusion of hydrogen (deuterium) and hydride blisters are formed on the outer surface of PT. Because the hydride blisters and zirconium matrix are acoustically continuous, it is not easy to distinguish the blisters from the matrix with conventional ultrasonic method. An ultrasonic velocity ratio method was developed to detect small hydride blisters on the zirconium pressure tube. Hydride blisters were grown in the PT specimen using a steady state thermal diffusion device. The flight times of longitudinal echo and reflected shear echo from the outer surface were measured accurately. The velocity ratio of the longitudinal wave to the shear wave was calculated and displayed using contour plot. Compared to the conventional flight time method of longitudinal wave, the velocity ratio method shows superior sensitivity to detect smaller blisters as well as better images for the blister shapes. Detectable limit of the outer shape of the hydride blisters was conservatively estimated as $500{\mu}m$, with the same specifications of ultrasonic transducer used in the actual PHWR pressure tube inspection.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.