• Title/Summary/Keyword: Longitudinal stress

Search Result 677, Processing Time 0.023 seconds

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.

Effect of Residual Stress on Femoral Arterial Stress-Strain Behavior

  • Chandran, K.B.;Mun, J.H.;Chen, J.S.;Nagaraj, A.;McPherson, D.D.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2001
  • It is well established that arteries are subjected to residual stress. Due to the effect of residual stress, the arteries open to a horse-shoe shape when a longitudinal cut is made on an excised arterial segment. Previously, the residual stress has been quantified by the opening angle of the horse-shoe shape. We have employed a finite element analysis of the open arterial segment to restore the same to the original cylindrical shape and computed the circumferential strain as well as the stress distribution in the wall. In this study, the stress distribution in the femoral arteries of miniswine was computed with and without the residual stress for a range of transmural pressures. Our analysis showed that the residual stress has the effect of redistribution of the circumferential stresses between the intima and the adventitia under physiological loading. The redistribution of the stress with the inclusion of residual stress may be important in the studies on effect of wall stresses on the endothelial and vascular smooth muscle cells.

  • PDF

A Study on Crack Properties iber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 균열특성에 관한 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.99-104
    • /
    • 2000
  • In this paper, the crack properties fiber reinforced concrete(SFRC) beams by experimental method is discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, SFRC has better crack properties than that of reinforced concrete(RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fibers, strength of concrete and the stress level. Crack width and number of cracks in SFRC beams have been evaluated from experimental test data at various levels of stress for the tested beams.

  • PDF

Behaviors of Precast Concrete Bridge Decks under Wheel Load (윤하중조건에서의 프리캐스트 콘크리트 바닥판 거동 특성)

  • Joo Bong Chul;Park Hung Seok;Kim Young Jin;Song Jae Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.303-306
    • /
    • 2005
  • For checking influence of load-position and system of stress-transmission in precast concrete bridge deck system, the test composite bridge was made a experiment by the wheel load machine. The result of experiment was the loop joint system of the precast decks has a difference which was the transmission system of longitudinal stress, comparing with general RC bridge deck system. The loop joint system has a behavior independently.

  • PDF

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF

Prediction of Tunnel Response by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 대한 터널의 응답 예측)

  • Kim, Intai;Han, Jungwoo;Yun, Seung;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three dimensional finite element analyses. Results of the analyses show that the spatially variable ground motion cause longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the material properties of the ground change in the longitudinal direction.

  • PDF

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder (이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구)

  • Lee, Doo Sung;Lee, Sung Chul;Suh, Suk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.457-463
    • /
    • 2008
  • The longitudinal stiffener performs its role to increase the local buckling strength by making simple support upon compression flange. In the recent researches, it is investigated that compression flange with point supports on certain arrangement reveals the same strength with longitudinal stiffeners. From this results, it is predictable that shear stud could perform the role of longitudinal stiffener if shear stud embedded in concrete satisfies the requirement to point-support under yield stress of the compression flange. In this study, the researches were performed to investigate the optimally required arrangement space of longitudinal point-support for which the shear stud replacing the longitudinal stiffeners and simultaneously determine the required numbers and space of shear stud for completely composite behavior between compression bottom flange and bottom concrete on the double composite girder system.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment

  • Kim, Seok;Shim, Yong-Lae;Song, Jung-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1033-1039
    • /
    • 2002
  • Partial penetration welding joint refers to the groove weld that applies to the one side welding which does not use steel backing and to both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. According to the above-mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area are so minimal and do not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi pass welding with 25.4 mm thick plate by using the J-integral, which finally led us the conclusion that the partial penetration multi-pass welding method is more applicable and effective in handling the root face with less than 6.35 mm.