• Title/Summary/Keyword: Longitudinal Stress Wave

Search Result 53, Processing Time 0.022 seconds

Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature

  • Sachin Kaushal;Rajneesh Kumar;Indu Bala;Gulshan Sharma
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.209-218
    • /
    • 2024
  • The present paper is focused on the study of the propagation of plane waves in thermoelastic media under a modified Green-Lindsay (MG-L) model having the influence of non-local and two temperature. The problem is formulated for the considered model in dimensionless form and is explained by using the reflection phenomenon. The plane wave solution of these equations indicates the existence of three waves namely Longitudinal waves (LD-Wave), Thermal waves (T-wave), and Shear waves (SV-wave) from a stress-free surface. The variation of amplitude ratios is computed analytically and depicted graphically against the angle of incidence to elaborate the impact of non-local, two temperature, and different theories of thermoelasticity. Some particular cases of interest are also deduced from the present investigation. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

Modulus and Damping Properties of Kaolinite Using Ultrasonic Testing (초음파를 이용한 카올린 점토의 계수 및 감쇠 특성)

  • 민덕기
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • The objective of the present research is to evaluate the wave propagation velocity and attenuation characteristics of kaolin clay specimens using ultrasonic testing. Test specimens with known initial micro-fabric were prepared using a two-stage slurry consolidation technique. For a known state of stress conditions, initial void ratio, and micro-fabric, a series of experiments were conducted to evaluate the longitudinal wave propagation velocity and associated damping behavior. The effects of major variables involved in ultrasonic testing of cohesive soil were considered in this study. Ultrasonic velocity was not correlated to the microfabric structure under the given consolidated pressure whereas ultrasonic attenuation was affected by the microstructural properties of the specimen.

Nondestructive Evaluation of Ceramic/Metal Interface Using the V(z) Curve of Scanning Acoustic Microscope (초음파현미경에서 V(z) 곡선을 이용한 세라믹/금속 접합계면의 비파괴평가)

  • Park Ik-Keun;Lee Chul-Ku;Cho Dong-Su;Kim Yong-Kwon
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • A leaky surface acoustic wave (LSAW) velocity was measured using a scanning acoustic microscope on the ceramic/metal interface in order to investigate material properties. The inverse Fourier transform (IFFT) of the V(z) curve contains the reflectance function of a liquid-specimen interface. So, the longitudinal, transverse, and Rayleigh wave velocities for each layer are obtained by the inversion of the V(z) curve at the same time. This paper contains mainly the experimental procedure for measurements of the LSAW velocity, and the results obtained for the velocity variation of individual layer after the thermal shock. It is shown that this method is useful in measuring the material properties under external stress.

Longitudinal Strength Analysis of Hull Girder by Direct Analysis Procedure (직접해석법(直接解析法)에 의한 선체(船體)의 종강도 해석)

  • J.G.,Shin;I.S.,Nho;B.C.,Shin;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.4
    • /
    • pp.40-48
    • /
    • 1984
  • The computer program DASH(Direct Analysis of Ship's Hull), based on the direct calculating procedure as proposed at the 4th ISSC(1970), was developed. The DASH program is designed by the following calculation procedure: 1) Derivation of the design wave loads through the ship motion analysis based on the strip theory. 2) Stress analysis of the hull girder based on the 7-degree of the freedom beam theory including the warping torsion effect. 3) Long-term prediction of the stresses based on the statistical approach using sea-spectrums and ocean wave data in the ship's route. An example calculation was performed for the purpose of a demonstration of the present approach on the 16,200 DWT Oil Tanker. The results are discussed and compared with the conventional method.

  • PDF

Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Fareed, Khurram;Safeer, Muhammad;Khedher, Khaled Mohamed;Ahmad, Manzoor;Naeem, M. Nawaz;Qazaq, Amjad;Qahtani, Abdelaziz Al;Mahmoud, S.R.;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • Vibration of protein microtubules is investigated based upon Orthotropic Elastic Shell Model, considering the effect of thermal stresses. The complete analytical formulas of thermal vibration for microtubules are obtained. It is observed that the effects of thermal stresses on the vibrational frequency mode are more significant when the longitudinal and circumferential wave vectors are large enough. But when the length of wave vector reduces to 5 nm, these effects have no significant effects. The present results well agree with the lattice vibrations of microtubules. Moreover, the results show that the effects of thermal stresses due to small change in temperature are not so significant but with the increase in temperature its effects are obvious.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

The Longitudinal Relation between Stressors and Depression of Men in Baby Boom Generation (베이비붐 세대 남성의 스트레스 요인과 우울의 종단적 인과관계)

  • Sung, Jun Mo
    • Korean Journal of Social Welfare
    • /
    • v.64 no.4
    • /
    • pp.285-310
    • /
    • 2012
  • This study examined the causal relationship of between stressors and depression using the wave 1~4 of Korean Welfare Panel Study by social stress theory. According to the result, the level of depression and depressed group was decreased in the course of time. As a panel regression analysis, Factors affecting the reduction of depression was upward of the income hierarchy, increase the satisfaction of family and social relationships, and residential satisfaction. Based on the results, the author suggested that social work policies and intervention direction should decrease social stress factors with causality to depression of the men in baby boom generation.

  • PDF

A Study on the Welding Characteristics of Hastelloy C-276 using a Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 Hastelloy C-276의 용접특성에 관한 연구)

  • Na, Gee-Dae;Yoo, Young-Tae;Shin, Ho-Jun;Oh, Yong-Seok
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.49-59
    • /
    • 2008
  • Hastelloy C-276, corrosion resistant alloy at high temperature, is used in chemical plant and power generation industry. In this study, process parameter of laser welding for welding property in Hastelloy C-276 using a continuous wave Nd:YAG laser was studied. As the result of experiment, laser welding did not show segregation or crack at heat affected zone compared to conventional GTWA welding. The melting zone showed cell dendritic structure along with welding line. In addition, planer front solidification is occurred from welding structure, and it was progressed to cellular solidification. Optimal process parameter for butt welding was 1.2kW and 2.0 m/min for laser power and welding speed, respectively. While heat input, output density, tensile stress, and longitudinal strain was $441.98{\times}103$ J/cm2, $29.553{\times}103$ W/cm2, 768 MPa, and 0.689, respectively. Lap welding of the same material showed greater discrepancy in tensile property during 1 line and 2 line welding. For 1 line welding, tensile stress was about 320 MPa, and 2 line showed slightly larger tensile stress. However, strain was decreased by 20%. From this result, lap welding of the same material, Hastelloy C-276, with 2 line welding is considered to be more effective process than 1 line welding with consideration of mechanical property.

The Practice of Bending Deflection using Non-destructive MOE of Glulam (비파괴 탄성계수를 이용한 집성재의 휨변형 예측)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In the glulam beam deflection it is necessary to check the reliability of theory formula, because of wood anisotropy and wood qualities (knot, slop of grain). In this experiment, when bending stress occurred on glulam, practice deflection of glulam measuring with AICON DPA-Pro 3D system were compared with prediction deflection calculated as substituting MOE through non-destructive testing and static MOE through bending test in differential equation of deflection curve. MOE using ultrasonic wave tester of laminae, MOE using natural frequencies of longitudinal vibrations ($E_{cu}$, $E_{cf}$), MOE using ultrasonic wave tester of glulam ($E_{gu}$) and MOE using natural frequencies of longitudinal vibrations ($E_{gf}$) were substituted in this experiment. When practice deflection measured by 3D system was compared with prediction deflection calculated with differential equation of deflection curve, within proportional limit the ratio of practice deflection and prediction deflection was similar as 1.12 and 1.14, respectively. Deflection using ultrasonic wave tester was 0.89 and 0.95, Deflection using natural frequencies of longitudinal vibrations was 1.07 and 1.10. The results showed that prediction deflection calculated by substituting using non-destructive MOE of glulam having anisotropy in differential equation of deflection curve was agreed well with practice deflection.

The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading (수중충격하중을 받는 선체구조의 충격 및 파손 해석)

  • Kie-Tae Chung;Kyung-Su Kim;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 1995
  • The shock fracture analysis for the structures of navy vessels subject to underwater explosions or of high speed vessels frequently subject to impact loads has been carried out in two steps such as the global or macro analysis and the fine or micro analysis. In the macro analysis, Doubly Asymptotic Approximation(DAA) has been applied. The three main failure modes of structure members subject to strong shock loading are late time fracture mode such as plastic large deformation mainly due to dynamic plastic buckling, and the early time fracture mode such as tensile tearing failure or transverse shear failure. In this paper, the tensile tearing failure mode is numerically analyzed for the micro analysis by calculating the dynamic stress intensity factor $K_I(t)$, which shows the relation between stress wave and crack propagation on the longitudinal stiffener of the model. Especially, in calculating this factor, the numerical caustic method developed from shadow optical method of caustic well known as experimental method is used. The fully submerged vessel is adopted for the macro analysis at first, of which the longitudinal stiffener, subject to early shock pressure time history calculated in macro analysis, is adopted for the micro analysis.

  • PDF