• Title/Summary/Keyword: Longitudinal Stability

Search Result 341, Processing Time 0.028 seconds

The Study on the Effect of the Aspect Ratio and Number of Spots on the Compressive Buckling Load of two Rectangular Plates Spot-Welded by FEM (점용접된 두 사각평판의 형상비 및 용접점수가 압축좌굴하중에 미치는 영향의 유한요소해석에 의한 연구)

  • Han, Geun-Jo;Jeon, Hyung-Yong;Lee, Hyoun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.191-196
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive buckling load is studied with respect to the thickness, aspect ratio of plates, number of welding spots. buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in tow directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.25 and that the effect of number of welding spots in transverse direction was large than that in longitudinal direction.

  • PDF

A Study on the Lateral Stability Improvement of a Small Canard Aircraft (소형 커나드 항공기의 가로안정성 향상에 관한 연구)

  • Hwang, Myoung-Shin;Kim, Yeong-Cheol;Eun, Hee-Bong;Park, Wook-Je;Choi, Won-Jong;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.45-51
    • /
    • 2003
  • This paper presents a method to improve lateral stability of a four-seat canard aircraft, Velocity-173. Longitudinal stability of Velocity-173 is rather good, but lateral stability is relatively poor. A small panel which increases the area of vertical tail is designed and manufactured. In a design process, AAA(Advanced Aircraft Analysis) is used to predict the change in stability. Flight test is performed to validate the effect of a small panel attached under the vertical panel. Maximum likelihood estimation method is used to extract lateral controllability / stability derivatives from flight test data. This work validates the effect of a small panel attached under the vertical tail.

The effect of intrinsic foot muscle training on medial longitudinal arch and ankle stability in patients with chronic ankle sprain accompanied by foot pronation

  • Chung, Kyoung A;Lee, Eunsang;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • Objective: The purpose of this study was to investigate whether the intrinsic foot muscle training method can improve the medial longitudinal arch in patients with chronic ankle injury and with pronated feet, as well as to investigate for the most effective exercise method for these patients. Design: Randomized controlled trial. Methods: Thirty men and women with pronated feet had participated in this study and were allocated to either the short foot exercise group (SFEG) or the towel curl exercise group (TCEG) randomly. SFEG and TCEG underwent exercises three times a week for 8 weeks, with three sets per day, totalling up to 5 minutes per day. The navicular drop test (NDT) was used in order to assess for changes in the medial longitudinal arch and the Cumberland ankle instability tool (CAIT) was used to assess for ankle instability of the chronic ankle sprain patients. Results: There was a significant increase in CAIT scores in the SFEG (p<0.05) and a significant difference between groups was presented (p<0.05). The NDT scores were significantly decreased in both groups (p<0.05). In the SFEG, the NDT scores were more decreased than in the TCEG (p<0.05). Conclusions: These results suggest that short foot exercises are more effective in providing intrinsic foot muscle training for patients with pronated feet among chronic ankle sprain patients. Furthermore, short foot exercises may be used to provide ankle stability.

A Study on Improving Driving Stability System in Slalom and Emergency Case (급선회반복 및 위급상황에서의 주행안정성 시스템에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1716-1721
    • /
    • 2005
  • Conventionally, 2WS is used for vehicle sleeting, which can only steering front wheel. In case of trying to high speed slalom or emergency through this kind of vehicle equipped 2WS, it may occur much of side slip angle. On the other hand, 4WS makes decreasing of side slip angle, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible control the longitudinal movement of braking equipment and drive which can only availab to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improed braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Derivation of Driving Stability Indicators for Autonomous Vehicles Based on Analyzing Waymo Open Dataset (Waymo Open Dataset 기반 자율차의 주행행태분석을 통한 주행안정성 평가지표 도출)

  • Hoyoon Lee;Jeonghoon Jee;Cheol Oh;Hoseon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.94-109
    • /
    • 2024
  • As autonomous vehicles are allowed to drive on public roads, there is an increasing amount of on-road data available for research. It has therefore become possible to analyze impacts of autonomous vehicles on traffic safety using real-world data. It is necessary to use indicators that are well-representative of the driving behavior of autonomous vehicles to understand the implications of them on traffic safety. This study aims to derive indicators that effectively reflect the driving stability of autonomous vehicles by analyzing the driving behavior using the Waymo Open Dataset. Principal component analysis was adopted to derive indicators with high explanatory capability for the dataset. Driving stability indicators were separated into longitudinal and lateral ones. The road segments on the dataset were divided into four based on the characteristics of each, which were signalized and unsignalized intersections, tangent road section, and curved road section. The longitudinal driving stability was 35.48% higher in the curved road sections compared to the unsignalized intersections. With regard to the lateral driving stability, the driving stability was 76.08% higher in the signalized intersections than in the unsignalized intersections. The comparison between curved and tangent road segments showed that tangent roads are 146.87% higher regarding lateral driving stability. The results of this study are valuable for the further research to analyze the impact of autonomous vehicles on traffic safety using real-world data.

Evaluation of Surface Damage Possibility on Strip Roads (작업로 노면의 피해가능성 평가에 관한 연구)

  • Ji, Byoung-Yun;Jung, Do-Hyun;Oh, Jae-Heun;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.656-660
    • /
    • 2008
  • This study is carried out to minimize the damage to the forest road when locating strip roads in the future for stability of timberland after afforestation by assessing the factors that affect the damage on the forest road surface and making appropriate constructing standards. Major factors that influence damage to the strip road surface were location, longitudinal gradients, soil types, cross-section shape in order of influence on damage. it is considered that structural road factors like longitudinal gradients, road width, location factors such as construction location, slope gradients and road material like soil types were greatly related to occurrence of road surface damage. Damage occurrences in the forest road were severe at the valley, longitudinal gradients of over 24%, weathered granite soil, concave of road position, road width of over 3.0 m. stability was high at longitudinal gradients of 4~24%, road width of under 3.0 m, ridge of road position, straight slope, soil materials. The evaluation table of damage possibility on forest road was manufactured by discriminant analysis using Quantification theory(II). The results showed that the discriminant ratios was 79.4% and this table was available for forest manager.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Study on the Ways to Improve Deep Underground Road Facilities and Operation Based on the Cases of Longitudinal Tunnel (장대터널의 사례에 기반한 대심도 지하도로 교통시설 및 운영 개선방안)

  • Choi, Jong Chul;Lim, Joon Beom;Hong, Ji yeon;Lee, Sung Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.122-131
    • /
    • 2015
  • Recently, starting with the deep underground road construction plan in Seobu Expressway, Korea, there area many studies on deep underground roads to be newly built. However, there is an extreme lack of safety standards, which does not consider traffic conditions and road driving characteristics. Therefore, this study reviewed safety elements to reflect in the deep underground road planning by analyzing driving stability of longitudinal tunnels with road environments, which resemble deep underground roads. For comprehensive analysis, the characteristics and causes of the accidents that have occurred in seven longitudinal tunnels with a length of 2km or over in Gangwon area, were collected. Specifically, geometric structures and facilities of each tunnel were investigated. Also, the present state of facility installation and the changes in driving speed of vehicles passing through each tunnel were observed to analyze the causes for the traffic accidents in each tunnel and accident reduction alternatives. It was revealed that the most frequent accidents in the tunnels resulted from the changes of traffic flow due to the abrupt speed reduction of forward vehicles, or the failure in speed control of following vehicles during the traffic congestion situation. Moreover, installing facilities such as plane and longitudinal curves, median strips and marginal strips seem to induce consistent driving speed. These results mean that for accident prevention, speed management must be preceded and there is a need to develop and introduce safety facilities actively to control the driving flow of forward and following vehicles.

A Study on Design Constraints of a Supercavitating Underwater Vehicle (초공동 수중운동체의 설계 제약조건에 관한 연구)

  • Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • This paper defines the design constraint in consideration of the dynamic characteristics and stability in the longitudinal direction of a supercavitating vehicle. Available range of the design variables is calculated by numerical simulation and the cavity modeling of vehicle dynamics is performed first. Configuration parameters of the supercavitating vehicle to determine the vehicle dynamics and characteristics of the cavity are defined as design variables. Design constraints are supercavitation, trim velocity, stability and vehicle dynamics in transition phase. Numerical results show that in accordance with the change of the design variables, the proposed design constraints reflect the physical characteristics of the supercavitating vehicle. This research finds the design region where the constraints of supercavity and the trim velocity are satisfied, and the stability analysis refines the design results by excluding the region where the stability is not guaranteed. The stability analysis is particularly important for a vehicle with the short fin span.