• 제목/요약/키워드: LongShort Term Memory(LSTM)

검색결과 522건 처리시간 0.038초

AI를 활용한 손가락 인식 및 가상 터치 서비스 (Finger Recognition and Virtual Touch Service using AI)

  • 조아라;유승배;윤병훈;조형주;하광림
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.938-939
    • /
    • 2023
  • 코로나-19로 인해 비접촉 서비스의 중요성이 더욱 대두되고 있다. 키보드나 마우스와 같은 기존 입력 장치를 대체하기 위해 사람들은 디지털 기기에서 손을 사용하여 자연스럽고 간단한 입력을 할 수 있게 되었다. 본 논문에서는 미디어파이프(MediaPipe)와 LSTM(Long Short-Term Memory) 딥러닝을 활용하여 손 제스처를 학습하고 비접촉 입력 장치로 구현하는 방법을 제시한다. 이러한 기술은 가상현실(VR; Virtual Reality), 증강현실(AR; Augmented Reality), 메타버스, 키오스크 등에서 활용 가능성이 크다.

다중 센서 기반의 낙상 검출 및 방향 분류 (Multisensor-Based Fall Direciton Classification)

  • 신효진;;남윤영;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.27-28
    • /
    • 2024
  • 고령화 사회가 도래함에 따라 낙상은 심각한 사회 문제로 대두되고 있다. 그러나 낙상 위험 예측 및 평가 도구의 한계가 여전히 존재하고 있어 정확하고 신뢰성 있는 낙상 평가 방법을 필요로 한다. 본 연구에서는 신체 다양한 부위에 부착되어 수집된 센서 데이터를 이용하여 낙상을 검출하고 낙상의 방향까지 실시간으로 분류하는 모델들을 구축 및 평가한다. 이는 낙상의 유형에 따른 신속한 조치가 가능하도록 한다.

  • PDF

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

딥러닝에 기반한 우리나라 장기간 일 단위 고해상도 격자형 기상자료 생산 (Development of long-term daily high-resolution gridded meteorological data based on deep learning)

  • 정유경;변규현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.198-198
    • /
    • 2023
  • 유역 내 수자원 계획을 효율적으로 수립하기 위해서는 장기간에 걸친 수문 모델링 뿐만 아니라 미래 기후 시나리오에 따른 수문학적 기후변화 영향 분석도 중요하다. 이를 위해서는 관측 값에 기반한 고품질 및 고해상도 격자형 기상자료 생산이 필수적이다. 하지만, 우리나라는 종관기상관측시스템(ASOS)과 방재기상관측시스템(AWS)으로 이루어진 고밀도 관측 네트워크가 2000년 이후부터 이용 가능했기에 장기간 격자형 기상자료가 부족하다. 이를 보완하고자 본 연구는 가정적인 상황에 기반하여 만약 2000년 이전에도 현재와 동일한 고밀도 관측 네트워크가 존재했다면 산출 가능했을 장기간 일 단위 고해상도 격자형 기상자료를 생산하는 것을 목표로 한다. 구체적으로, 2000년을 기준으로 최근과 과거 기간의 격자형 기상자료를 딥러닝 알고리즘으로 모델링하여 과거 기간을 대상으로 기상자료(일 단위 기온, 강수량)의 공간적 변동성 및 특성을 재구성한다. 격자형 기상자료의 생산을 위해 우리나라의 고도에 기반하여 기상 인자들의 영향을 정량화 하는 보간법인 K-PRISM을 적용하여 고밀도 및 저밀도 관측 네트워크로 두 가지 격자형 기상자료를 생산한다. 생산한 격자형 기상자료 중 저밀도 관측 네트워크의 자료를 입력 자료로, 고밀도 관측 네트워크의 자료를 출력 자료로 선정하여 각 격자점에 대해 Long-Short Term Memory(LSTM) 알고리즘을 개발한다. 이 때, 멀티 그래픽 처리장치(GPU)에 기반한 병렬 처리를 통해 비용 효율적인 계산이 가능하도록 한다. 최종적으로 1973년부터 1999년까지의 저밀도 관측 네트워크의 격자형 기상자료를 입력 자료로 하여 해당 기간에 대한 고밀도 관측 네트워크의 격자형 기상자료를 생산한다. 개발된 대부분의 예측 모델 결과가 0.9 이상의 NSE 값을 나타낸다. 따라서, 본 연구에서 개발된 모델은 고품질의 장기간 기상자료를 효율적으로 정확도 높게 산출하며, 이는 향후 장기간 기후 추세 및 변동 분석에 중요 자료로 활용 가능하다.

  • PDF

선박 연료 공급 기기류의 장시간 운전 데이터의 고장 진단에 있어서 XGBoost 및 Conv1D의 예측 정확성 비교 (Comparison of Fault Diagnosis Accuracy Between XGBoost and Conv1D Using Long-Term Operation Data of Ship Fuel Supply Instruments)

  • 김형진;김광식;황세윤;이장현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.110-110
    • /
    • 2022
  • 본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다

  • PDF

LSTM 모형을 이용한 하천 고탁수 발생 예측 연구 (Prediction of high turbidity in rivers using LSTM algorithm)

  • 박정수;이현호
    • 상하수도학회지
    • /
    • 제34권1호
    • /
    • pp.35-43
    • /
    • 2020
  • Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.

Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정 (RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST)

  • 장원진;이용관;이지완;김성준
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.123-132
    • /
    • 2019
  • This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.

다변수 LSTM 순환신경망 딥러닝 모형을 이용한 미술품 가격 예측에 관한 실증연구 (An Empirical Study on Prediction of the Art Price using Multivariate Long Short Term Memory Recurrent Neural Network Deep Learning Model)

  • 이지인;송정석
    • 한국콘텐츠학회논문지
    • /
    • 제21권6호
    • /
    • pp.552-560
    • /
    • 2021
  • 새로운 미술품 유통방식의 발달로 미술품의 미적 효용을 넘어 투자재로서 바라보는 시각이 활성화되고 있다. 미술품의 가격은 주식이나 채권 등과 달리 객관적 요소와 주관적 요소들이 모두 반영되어 결정되는 이질적 특성이 있기 때문에 가격 예측에 있어서 그 불확실성이 높다. 본 연구에서는 LSTM(장단기 기억) 순환신경망 딥러닝 모형을 활용하여 낙찰총액 순위 1위부터 10위까지의 한국 작가의 회화 작품을 대상으로 작가의 특성, 작품의 물리적 특성, 판매적 특성 등을 입력으로 하여 경매 낙찰가의 예측을 시도하였다. 연구 결과, 모델에 의한 예측 가격과 실제 낙찰 가격의 차이를 설명하는 RMSE 값이 0.064 수준이었으며 작가별로는 이대원 작가의 예측력이 가장 높았고, 이중섭 작가의 예측력이 가장 낮았다. 투자재로서 미술품 시장이 더욱 활성화되고 경매 낙찰 가격의 예측 수요가 높아지면서 본 연구의 결과가 활용될 수 있을 것이다.

Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: case study of reservoirs in Nonsan City

  • Heesung Lim;Hyunuk An;Gyeongsuk Choi;Jaenam Lee;Jongwon Do
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.193-202
    • /
    • 2022
  • The recurrent neural network (RNN) algorithm has been widely used in water-related research areas, such as water level predictions and water quality predictions, due to its excellent time series learning capabilities. However, studies on water quality predictions using RNN algorithms are limited because of the scarcity of water quality data. Therefore, most previous studies related to water quality predictions were based on monthly predictions. In this study, the quality of the water in a reservoir in Nonsan, Chungcheongnam-do Republic of Korea was predicted using the RNN-LSTM algorithm. The study was conducted after constructing data that could then be, linearly interpolated as daily data. In this study, we attempt to predict the water quality on the 7th, 15th, 30th, 45th and 60th days instead of making daily predictions of water quality factors. For daily predictions, linear interpolated daily water quality data and daily weather data (rainfall, average temperature, and average wind speed) were used. The results of predicting water quality concentrations (chemical oxygen demand [COD], dissolved oxygen [DO], suspended solid [SS], total nitrogen [T-N], total phosphorus [TP]) through the LSTM algorithm indicated that the predictive value was high on the 7th and 15th days. In the 30th day predictions, the COD and DO items showed R2 that exceeded 0.6 at all points, whereas the SS, T-N, and T-P items showed differences depending on the factor being assessed. In the 45th day predictions, it was found that the accuracy of all water quality predictions except for the DO item was sharply lowered.