In this paper, we propose a robust music audio fingerprinting system for automatic music retrieval. The fingerprint feature is extracted from the long-term dynamic modulation spectrum (LDMS) estimation in the perceptual compressed domain. The major advantage of this feature is its significant robustness against severe background noise from the street and cars. Further the fast searching is performed by looking up hash table with 32-bit hash values. The hash value bits are quantized from the logarithmic scale modulation frequency coefficients. Experiments illustrate that the LDMS fingerprint has advantages of high scalability, robustness and small fingerprint size. Moreover, the performance is improved remarkably under the severe recording-noise conditions compared with other power spectrum-based robust fingerprints.
Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.409-410
/
2022
This paper proposes a fusion model based on Long-Short Term Memory networks (LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification. This method will become an important way to optimize the model and improve the performance of the model.
Proceedings of the Computational Structural Engineering Institute Conference
/
2006.04a
/
pp.248-255
/
2006
Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels. however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results are clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the firstpart are used to prepare a set of data for learning process. Tunnel behavior especially the displacements of the lining has been exclusively investigated for the back analysis.
The Transactions of the Korean Institute of Power Electronics
/
v.26
no.3
/
pp.183-191
/
2021
A battery management system (BMS) provides some functions for ensuring safety and reliability that includes algorithms estimating battery states. Given the changes caused by various operating conditions, the state-of-health (SOH), which represents a figure of merit of the battery's ability to store and deliver energy, becomes challenging to estimate. Machine learning methods can be applied to perform accurate SOH estimation. In this study, we propose a Long-Term Recurrent Convolutional Network (LRCN) that combines the Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM) to extract aging characteristics and learn temporal mechanisms. The dataset collected by the battery aging experiments of NASA PCoE is used to train models. The input dataset used part of the charging profile. The accuracy of the proposed model is compared with the CNN and LSTM models using the k-fold cross-validation technique. The proposed model achieves a low RMSE of 2.21%, which shows higher accuracy than others in SOH estimation.
Seo, Chang-Seob;Kim, Jung-Hoon;Lim, Soon-Hee;Shin, Hyeun-Kyoo
Herbal Formula Science
/
v.19
no.1
/
pp.183-194
/
2011
Objectives : To estimate the shelf-life by long-term storage test of Pyungwi-san. Methods : Experiments were conducted to evaluate the stability such as the selected physicochemical, heavy metal, microbilogical experiment under an acceleration test and long-term storage test of Pyungwi-san in different storage under room temperature, refrigeration and freezing. Futhermore, HPLC analysis was performed for the determinations of glycyrrhizin in the Pyungwi-san on an Inertsil ODS-3 column(250 mm ${\times}$ 4.6 mm, 5 um) using solvent 35% acetonitrile include 0.05% phosphoric acid at 254 nm. The flow rate was 1.0 mL/min. Results : The significant change was not showed in pH, heavy metal, microbiological, identification test and quantitative analysis based on acceleration test and long-term storage test. Retention time of glycyrrhizin in HPLC chromatogram was about 16.065 min and calibration curve showed good linearity($R^2$ = 0.9999). The contents of glycyrrhizin in acceleration test and long-term storage test were 0.068~0.076 mg/mL and 0.066~0.077 mg/mL, respectively. Shelf-lifes of room temperature, refrigeration and freezing by long-term storage test were predicted 41, 24 and 34 months, respectively. Conclusions : The suggested shelf-life would be helpful on the storage and distribution of herbal medicine.
Kim, Hyun-Chul;Kum, Eun-Joo;Kwon, Do-Hyoung;Lee, Hye-Young
Biomedical Science Letters
/
v.15
no.3
/
pp.217-227
/
2009
The present study was set to evaluate the effect of pomegranate extracts on improvement of the menopausal syndromes such as face flushing in ovariectomized rats by carrying out short- and long-term experiments. Pomegranate extracts used to feed rats were prepared from the pulp part which does not contain the rid of the pomegranate, and were dissolved in propylene glycol. From the short-term (16 days) experiment, it was clear that when the 25, 250, 1,250 mg/kg/day concentrations of pomegranate extracts were orally fed to ovariectomized rats, the body temperature of the rats in all the 3 groups were decreased with statistical significance compared to other control groups which were fed with propylene glycol only. Especially, the body temperature decreased by $2.7^{\circ}C$ compared to control groups even when the pomegranate extracts were fed at the low concentration of 25 mg/kg/day implying the usefulness of pomegranate extracts in improving face flushing troubles. In addition, the body weight of the groups fed with pomegranate extracts also decreased when compared to groups fed with only propylene glycol, and the results were also statistically significant. In case of the estradiol level in the blood of rats, the levels were somewhat higher in the groups fed with pomegranate extracts than the control groups, even though the difference was not statistically significant. As found from the results of the short-term experiment, in long-term experiment, the groups fed with pomegranate extracts showed statistically significant decrease in the body temperature and the body weight, whereas the increase of the estradiol levels in blood in each groups were statistically insignificant. During the short- and long-term experiments, no sign of toxicity was found in rats fed with pomegranate extracts indicating no toxic side effects of the pomegranate extracts when orally fed. The concentrations of pomegranate extracts 25, 250, 1250 mg/kg/day treated to ovariectomized rats in this study can be estimated to be 1.5, 15, and 75 g/day when treated to women whose body weight is 60 kg which is average for women with menopausal syndromes. Since even the 75 g/day of high concentration of pomegranate extracts did not show any toxicity in short- and long-term experiments, taking 1.5 g/day concentration of pomegranate extracts would be safe dose for not causing any side effects. Therefore, it can be concluded from the results of this study that taking 1.5 g/day of pomegranate extracts for certain period time will improve the menopausal syndromes including face flushing.
We have developed a method to build time series prediction models by Genetic Programming (GP). Our proposed CP includes two new techniques. One is the parameter optimization algorithm, and the other is the new mutation operator. In this paper, the sunspot prediction experiment by our proposed CP was performed. The sunspot prediction is good benchmark, because many researchers have predicted them with various kinds of models. We make three experiments. The first is to compare our proposed method with the conventional methods. The second is to investigate about the relation between a model-building period and prediction precision. In the first and the second experiments, the long-term data of annual sunspots are used. The third is to try the prediction using monthly sunspots. The annual sunspots are a mean of the monthly sunspots. The behaviors of the monthly sunspot cycles in tile annual sunspot data become invisible. In the long-term data of the monthly sunspots, the behavior appears and is complicated. We estimate that the monthly sunspot prediction is more difficult than the annual sunspot prediction. The usefulness of our method in time series prediction is verified by these experiments.
Journal of Institute of Control, Robotics and Systems
/
v.13
no.5
/
pp.393-398
/
2007
In this paper, we propose the development of Artificial Hippocampus Algorithm(AHA) which remodels a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 4 steps system (EC, DG CA3, and CA1) and improve speed of teaming by addition of modulator to long-term memory teaming. In hippocampus system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labeled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CA1 region, convergence of connection weight which is used long-term memory is learned fast a by neural network which is applied modulator. To measure performance of Artificial Hippocampus Algorithm, PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) are applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by AHA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.
Jung, Jae-Sang;Song, Hyun Ku;Lee, Jong Sup;Kim, Gweon Su
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.394-398
/
2016
Numerical analysis was conducted using Delft3D developed by Deltares in Netherlands to predict long-term river bed changes in Saemangeum Area. Tidal flow, discharge through the drainage gates and river bed changes in numerical model was verified by comparing to the results of field observation and hydraulic experiments. We calculated long-term river bed changes in Saemangeum area for 10 years from 2031 to 2040 after completion of development in Saemangeum. It is shown that 70 cm and 139 cm of accumulation occur in estuaries of Dongjin River and Mankyong River, respectively. Variation of flood level was also investigated considering long-term river bed changes. There was no change in estuary of Dongjin River but maximum flood level in estuary of Mankyong River increased 81 cm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.