• Title/Summary/Keyword: Long-term energy demand forecasting

Search Result 19, Processing Time 0.028 seconds

Long-term Energy Demand Forecast in Korea Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 한국의 장기 에너지 수요예측)

  • Choi, Yongok;Yang, Hyunjin
    • Environmental and Resource Economics Review
    • /
    • v.28 no.3
    • /
    • pp.437-465
    • /
    • 2019
  • In this study, we propose a new method to forecast long-term energy demand in Korea. Based on Chang et al. (2016), which models the time varying long-run relationship between electricity demand and GDP with a function coefficient panel model, we design several schemes to retain objectivity of the forecasting model. First, we select the bandwidth parameters for the income coefficient based on the out-of-sample forecasting performance. Second, we extend the income coefficient using the functional principal component analysis method. Third, we proposed a method to reflect the elasticity change patterns inherent in Korea. In the empirical analysis part, we forecasts the long-term energy demand in Korea using the proposed method to show that the proposed method generates more stable long term forecasts than the existing methods.

The Effect of Changes of the Housing Type on Long-Term Load Forecasting (가족구성형태의 변화가 주택용 부하의 장기 전력수요예측에 미치는 영향 분석)

  • Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1276-1280
    • /
    • 2015
  • Among the various statistical factors for South Korea, the population has been steadily decreased by lower birthrate. Nevertheless, the number of household is constantly increasing amid population aging and single life style. In general, residential electricity use is more the result of the number of household than the population. Therefore, residential electricity consumption is expected to be far higher for decades to come. The existing long-term load forecasting, however, do not necessarily reflect the growth of single and two-member households. In this respect, this paper proposes the long-term load forecasting for residential users considering the effect of changes of the housing type, and in the case study the changes of the residential load pattern is analyzed for accurate long-term load forecasting.

Regional Electricity Demand Forecasting for System Planning (계통계획을 위한 지역별 전력수요예측)

  • Jo, I.S.;Rhee, C.H.;Park, J.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.292-294
    • /
    • 1998
  • It is very important for electric utility to expand generating facilities and transmission equipments in accordance with the increase of electricity demand. Regional electricity demand forecasting is among the most important step for long-term investment and power supply planning. The main objectives of this paper are to develop the methodologies for forecasting regional load demand. The Model consists of four models, regional economy, regional electricity energy demand, areal electricity energy demand. and areal peak load demand. This paper mainly suggests regional electricity energy demand model and areal peak load demand. A case study is also presented.

  • PDF

Long-term Regional Electricity Demand Forecasting (지역별 장기 전력수요 예측)

  • Kwun, Young-Han;Rhee, Chang-Mo;Jo, In-Seung;Kim, Je-Gyun;Kim, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.87-91
    • /
    • 1990
  • Regional electricity demand forecasting is among the most important step for lone-term investment and power supply planning. This study presents a regional electricity forecasting model for Korean power system. The model consists of three submodels, regional economy, regional electricity energy demand, and regional peak load submodels. A case study is presented.

  • PDF

A Study on the Comparison of Electricity Forecasting Models: Korea and China

  • Zheng, Xueyan;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Short-term demand forecasting method at both direction power exchange which uses a data mining (데이터 마이닝을 이용한 양방향 전력거래상의 단기수요예측기법)

  • Kim Hyoung Joong;Lee Jong Soo;Shin Myong Chul;Choi Sang Yeoul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.722-724
    • /
    • 2004
  • Demand estimates in electric power systems have traditionally consisted of time-series analyses over long time periods. The resulting database consisted of huge amounts of data that were then analyzed to create the various coefficients used to forecast power demand. In this research, we take advantage of universally used analysis techniques analysis, but we also use easily available data-mining techniques to analyze patterns of days and special days(holidays, etc.). We then present a new method for estimating and forecasting power flow using decision tree analysis. And because analyzing the relationship between the estimate and power system ceiling Trices currently set by the Korea Power Exchange. We included power system ceiling prices in our estimate coefficients and estimate method.

  • PDF

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.