• Title/Summary/Keyword: Long-term durability

Search Result 497, Processing Time 0.027 seconds

Polymeric Humidity Sensor Using Polyelectrolyte Derived from Poly(amide-sulfone)s

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.227-231
    • /
    • 2009
  • New polyelectrolytes derived from poly(amide-sulfone)s and 1,5-dibromopentane were simultaneously fabricated on the electrode by the crosslinking reaction. The substrate was pretreated with a bromoalkyl-containing, silane-coupling agent to anchor the humidity-sensitive membrane to the substrate through the covalent bond. When the resistance dependence on the relative humidity of the crosslinked poly(amide-sulfone)s was measured, the resistance varied by three orders of magnitude between 20%RH and 90%RH, which was the required RH range for a humidity sensor operating at ambient humidity. Their water durability, long-term stabilities under various environments, hysteresis and response and recovery times were measured and evaluated as a humidity-sensing membrane.

Evaluation on the Physical Characteristics of Cement-Type Solidification using Weathered Granite St Yellow Soil as an Aggregate (마사토, 황토를 골재로 이용한 시멘트계 고화재의 물리적 특성 평가)

  • 김특준;김인섭;이종규;추용식;김병익;김남호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.601-606
    • /
    • 2002
  • This study explored physical properties of a hardened cement and a concrete specimen using a high performance cement type solidification consisting of a weathered granite soil and a yellow soil mainly. Also the development of high performance cement type solidification was purposed for an intensity improvement and a long-term durability. As the experimental results, a mortar used by the weathered granite soil shows positive result, however using the yellow soil as a mortar Shows less positive result at the compressive strength. Also the dynamic modulus of elasticity measurement result, the concrete specimens used by the weathered granite and the yellow soil reached above 90%, so it seems to have the durability of freezing and thawing.

  • PDF

Effect of Concrete Coating Materials for the Improvement of Concrete Durability (콘크리트 표면도장에 의한 내구성증진 효과)

  • 문한영;김성수;안태송;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.433-436
    • /
    • 1999
  • Long-term durability of the reinforced concrete structures exposed to marine environment deteriorates seriously by the attack of the chloride ion from see water results in corrosion of steel reinforcement in concrete. Their coating effect is aluminum oxide-isocyanate-based coating material, resistance of chloride penetration, carbonation and freezing and thawing resistance were compared to acryl-based coating material and sealer type o waterproofing material. Aluminum oxide-isocyante-based and acryl-based coating material show higher resistance to chloride penetration and carbonation than the sealer type do waterproofing material and aluminum oxide-isocyanate-based coating resist about 99% of chloride penetration. Resultants to the accelerated test for freezing and thawing, coating concrete show higher resistance than non-coating concrete, respectively.

  • PDF

A Experimental Study on the Chloride Diffusion Properties in Concrete (콘크리트 중의 염소이온 확산 특성에 관한 실험적 연구)

  • 박승범;김도겸
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • Since the mechanism of chloride diffusion and its ratio in concrete depend on structural conditions and concrete as a micro-structure, if these are analyzed quantitatively, the long-term ageing of structures can be predicted. Although, a quantitative analysis of concrete micro-structure, in which the results are affected by various parameters, is very difficult, this can be done indirectly by the durability test of concrete. In this study, the compressive strength, void ratio and air permeability of concrete. In this study, the compressive strength, void ratio and air permeability of concrete are chosen as the parameters in concrete durability test, and these effects on test results are analysed according to changes of mixing properties. The relationships between parameters and chloride diffusion velocity is used for prediction models of chloride diffusion. The developed prediction models for the chloride diffusion according to mixing and physical properties, can be used to estimate the service life and corrosion initiation of reinforcing bars in marine structures.

Estimation of Probability Valuable for Diffusion Coefficient of Chloride Ion (염소이온 확산계수의 확률변수 평가)

  • Bae Su Ho;Lee Kwang Myong;Kim Jee Sang;Jung Sang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.515-518
    • /
    • 2005
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures exposed to chloride environments. In particular, the development of new procedures for probability-based durability analysis and design has been proved to be very valuable. To carry out the procedures described above, the statistical properties of design valuables such as diffusion coefficient of chloride ion, surface chloride concentration, and chloride threshold value etc. should be known. For this purpose, this paper presents the statistical properties of the diffusion coefficient of chloride ion such as mean value and standard deviation with water-cement(w/c) ratio and curing conditions, respectively. It was observed from the test that the standard deviation for the diffusion coefficient of chloride ion was found to be small with decrease in the w/c ratio irrespective of curing conditions and that of standard curing was found to be smaller than that of field curing.

  • PDF

A First Principles Study on Nano-scale Pt Alloy Structures for Fuel Cell Catalysts (제일원리전산을 이용한 연료전지용 나노 스케일 백금 합금촉매에 대한 열역학적 구조 분석)

  • Noh, Seung-Hyo;Han, Byung-Chan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.217-221
    • /
    • 2012
  • Over the last decade, performances of low temperature fuel cells are substantially improved by developing highly active Pt-M alloy catalysts. The electrochemical stability of those catalysts, however, still does not meet the commercial grade for fuel cells to be long-term power sources of electrical vehicles. To unveil a major mechanism causing such weak durability, we extensively utilize ab-initio computations on nano-scale Pt-Co alloy catalysts and analyze thermodynamically the most stable structure as a function of compositional variation. Our results indicate that there is a certain feature governing the particle distribution of a specific alloy element on the nano-scale catalysts, which aggravates the electrochemical degradation.

  • PDF

An Experimental Study on the Compressive Strength of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도에 관한 실험적 연구)

  • Jeong, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.54-55
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Securing the performance of reinforced concrete is directly connected to the durability and longevity of the building. One of the major factors that deteriorate the durability of concrete is harmful ion. Recently, the quality and improvement method of reinforced concrete for penetration of harmful ion has been studied. In this study, the bead type ion exchange resin is substituted for 0%, 3%, and 6% of the fine aggregate volume in the mortar. The speciments underwent underwater curing and were checked for compressive strengths of 3 days and 28 days. From the results of compressive strength, it can be seen that the higher the substitution ratio of the ion exchange resin, the lower the early strength and long-term strength development, especially the early strength development.

  • PDF

Evaluation of Durability Performance of Wet- Mixed Shotcrete with Powder Types Cement Mineral Accelerator (시멘트 광물계 급결제를 사용한 습식 숏크리트의 내구성 평가)

  • Won Jong-Pil;Sung Sang-Kyoung;Park Chan-Gi;Cho Yong-Jin;Choi Seok-Won;Park Hae-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.253-256
    • /
    • 2004
  • Recently, construction works of scale are getting larger with economic growth. Shotcreting is one of major processes in tunnels construction. Accelerator is used in tunnel and underground structures to ensure early strength of shotcrete. Silicate based accelerator and aluminate based accelerator is getting widely in the field. But these accelerators have many problems due to decesase of long-term strength and low quality of the hardened shotcrete. in order to solve these problems, recently developed powder types cement mineral accelerator. In this study, we tested chloride permeability, freezing and thawing and accelerated carbonation of shotcrete. As a result of the test, wet-mixed shotcrete with powder types cement mineral accelerator exhibited durability improvement compared to the conventional shotcrete accelerator.

  • PDF

An Experimental Study on the Neutralization of High-Flowable Concrete (고유동콘크리트의 중성화에 관한 실험적 연구)

  • Jeon, Hyun-Kyu;Lim, Jin-Kyu;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.177-185
    • /
    • 1999
  • In this study, study about fly ash and blast-furnace slag used as substitutive materials for cement, and the influence on the neutralization of high flow concrete durability with these substitutive materials was performed and analyzed. The results are as follows 1) Aggregate segregation was partially improved with the progress of the admixture input at the mix proportion above slump flow 65 cm 2) Compressive strength with the progress of the increasement of fly ash input was decreased in early age, but decrease range was improved in long term age. Also, in case of blast-furnace, similar or improved compressive strength was appeared. 3) The neutralization depth with fly ash input was noticeably increased. But blast-furnace slag was effective to prevent. 4) In this experiment, high powder content was advantageously affected on preventive effect of the neutralization, and the relationship between the compressive strength and the neutralization depth was inversely proportional.

  • PDF

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.