• Title/Summary/Keyword: Long-term design tensile strength

Search Result 33, Processing Time 0.024 seconds

Evaluation of Durability and Long-term Design Tensile Strength of Flexible Geogrids (연성 지오그리드의 내구성 및 장기설계인장강도 평가)

  • 조삼덕;김진만;안주환;전한용;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.21-38
    • /
    • 1999
  • Engineering properties of most polymers used in geosynthetics such as geogrid can be degraded by the chemical reaction (e.g., oxidization, ultraviolet rays, hydrolysis etc.), chemical and mechanical load, microorganism, and so on. In addition, polymer can be damaged by the compaction during construction, and the characteristic of tensile strength of polymer can be changed by the long-term creep effect. In this study, engineering properties of flexible geogrids which are manufactured by weaving/knitting the high-tenacity polymers such as polyester formed in a very open, grid-like configuration, coated with any one of a number of materials (e.g., PVC, latex, etc.), are investigated. Through the analysis of test results, the durability and the long-term design tensile strength of flexible geogrids are evaluated.

  • PDF

A Study on Engineering Characteristics of Geogrids and the Applicability in fields (지오그리드의 공학적 특성 및 설계인자 적용성 평가에 관한 연구)

  • 신은철;김두환;신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.105-112
    • /
    • 1999
  • In recent the superior economic benefits and the convenience of installation increased the use of geosynthetics, especially geogrids with the effects of high tensile strength. In this study, various tests were conducted to determine the physical and chemical properties of geogrids which contains durability under various critical conditions, creep behavior and the stability for installation damage in fields. With analysis of test results, the partial and total safety factors were determined and presented the long term design strength of flexible geogrids.

  • PDF

An Experimental Study on the Combined Effect of Installation Damage and Creep of Geogrids (지오그리드의 시공시 손상 및 크리프 복합효과에 대한 실험적 연구)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.561-568
    • /
    • 2005
  • The factors affecting the long-term design strength of geogrid can be classified into factors on creep deformation, installation damage, temperature, chemical degradation and biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. Current practice in the design of reinforced soil is to calculate the long-term design strength of a reinforcement damaged during installation by multiplying the two partial safety factors, $RF_{ID} and RF_{CR}$. This method assumes that there is no synergy effect between installation damage and creep deformation of geogrids. Therefore, this paper describes the results of a series of experimental study, which are carried out to assess the combined effect of installation damage and creep deformation for the long-term design strength of geogrid reinforcement. The results of this study show that the tensile strength reduction factors, RF, considering combined effect between installation damage and creep deformation is less than that calculated by the current design method.

  • PDF

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

A Study on the Resonable Design of Eco-Metal Reinforced Retaining Wall (Eco-Metal 보강토 옹벽의 합리적 설계에 관한 연구)

  • Yoon, Jun-Yeong;Noh, Si-Won;Lee, Yeong-Seang;Lee, Soon-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.772-781
    • /
    • 2010
  • In this study, a revegetation reinforced earth retaining wall to strengthen the strength than construction and make up for the weakness; eco-friendly part, of the existing facilities is new construction method. The special attention is that Eco-Metal reinforced retaining wall is not use concret. Before test construction on the scene, the stability of Eco-Metal reinforced retaining wall was checked by an experiment with a model and numerical analysis. The result of an experiment with a model was that the loaded tensile stress 40.2KN/m was more than long-term design tensile strength 29.4KN/m at Geogrid and a safety factor of numerical analysis was 1.14.

  • PDF

Experimental Investigations of Combination Effects of Installation Damage and Creep Deformation on Long-Term Design Strength of Geogrids (지오그리드의 장기설계인장강도에 미치는 시공시 손상 및 크리프 변형 복합효과에 대한 실험적 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong;Lee, Do-Hee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.23-37
    • /
    • 2005
  • The factors affecting the long-term design strength of geogrid can be classified into factors on creep deformation, installation damage, temperature, chemical degradation and biological degradation. Especially, creep deformation and installation damage are considered as main factors to determine the long-term design strength of geogrid. Current practice in the design of a reinforced soil structures is to calculate the long-term design strength of a geosynthetic reinforcement damaged during installation by multiplying the two partial safety factors, $RF_{ID}$ and $RF_{CR}$. This method assumes that there is no evaluation of synergy effect between installation damage and creep deformation of geogrids. This paper describes the results of a series of experimental study, which are carried out to assess the combined effect of the installation damage and the creep deformation for the long-term design strength of geogrid reinforcements. A series of field tests was carried out to assess installation damage of various geogrids with respect to different fill materials, and then creep tests are conducted to evaluate the creep deformation of both undamaged and damaged geogrids. The results indicated that the tensile strength reduction factors, RF, considering the combined effect between the installation damage and the creep deformation is less than that calculated by the current design method.

  • PDF

Experimental Assessment of Mechanical Properties of Geo-grid Reinforced Material and Long-Term Performance of GT/HDPE Composite

  • Seo, Jung-Min;Min, Kyung-Ho;Hwang, Beong-Bok;Lee, In-Chul;Ruchiranga, Jayasekara Vishara;Jeon, Han-Yong;Jang, Dong-Hwan;Lim, Joong-Yeon
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.247-258
    • /
    • 2008
  • This paper is concerned with the long-term performance of geo-textile (GT) composites in terms of creep deformation and frictional properties. Composites of PVA GT and HDPE GM were made to investigate the advanced properties of long-term performance related to waste landfill applications. The same experiments were also performed for typical polypropylene and polyester GT and compared to PVA GT/HDPE GM composites. We also develop high performance GT composites with GM by using PVA GT, which is capable of improving the frictional properties and thus enhances long-term performance of GT composites. Experimental study reveals that the friction coefficient of GT composites is relatively large compared with those of polyester and polypropylene non-woven GT as long as the friction media has similar size to the particles of domestic standard earth. In addition, the geo-composites bonded with geo-grid by a chemical process were investigated experimentally in terms of strain evaluation and creep response values. Geo-grid plays an important role as a reinforcing material. Three kinds of geo-grid were prepared as strong yarn polyester and they were woven type, non-woven type, and wrap knitted type. The sample geo-grids were then coated with PVC. The rib tensile strength tests were conducted to evaluate geo-grid products in terms of tensile strength with regard to single rib. The test was performed according to GRI-GGI. It was concluded again from the experiments that the tensile and creep strains of the geo-grid showed such stable values that the geo-grid prepared in this study could protect geo-textile partially in practical structures.

Model to Determine Long-term Allowable Strength of Geosynthetics Reinforcements Considering Strain Compatibility (변형률 적합성을 고려한 토목섬유 보강재의 장기허용강도 결정 모델)

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1580-1587
    • /
    • 2005
  • To calculate the long-term allowable strength of geosynthetic reinforcement, replacement method was recommended. The isochronous creep curve by S. Turner was used to define the relation between creep strain and allowable strength. In isochronous curve at given time, one can read the allowable strength at allowable creep strain. The allowable strain gets from specification by directors or manufacturers according to the allowable displacement of reinforced structures. The allowable strength can be determined in relation to the allowable horizontal displacement each structures case by case. The effect of install damage on isochronous behaviors of geosynthetic reinforcement was little. In previous study, install damage increase the creep strain slightly. And the degradation was not identified. But it is supposed that degradation increase the creep strain. In conclusion, The recommended model to determine long-term allowable strength of geosynthetic reinforcements considering tensile deformation of reinforcement and soil is fit for proper, correct and economic design for reinforced earth walls.

  • PDF

Parametric Study on Long-Term Deflections of Flat Plates Considering Effects of Construction Loads and Cracking (시공하중 및 균열 효과를 고려한 플랫 플레이트의 장기 처짐에 대한 변수 연구)

  • Choi, Seung Min;Eom, Tae Sung;Kim, Jea Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.44-54
    • /
    • 2012
  • The structural designs of RC flat plates that have no flexural stiffness by boundary beams may be governed not by strength conditions but by serviceabilities. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the immediate and long-term deflections of a flat plate system, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of calculating slab deflections with considering construction sequences, concrete cracking, and long-term effects is proposed. Using the proposed method, the parametric study for deflections of flat plates is performed. With various conditions for slab construction cycle, the number of shored floors, tensile or compressive reinforcement ratio, compressive strength of concrete, construction live load, and slab thickness, the immediate deflection during construction and long-term deflections after completion are analyzed. The calculated results are compared with the serviceability limits offered by the structural design code.

Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature (Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성)

  • Chae, Byoung-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.