• Title/Summary/Keyword: Long-distance sensor

Search Result 155, Processing Time 0.024 seconds

Automatic Left/Right Boom Angles Control System for Upland Field (전자용 붐방제기의 붐의 좌우 경사각 자동제어)

  • 이중용;김영주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.457-462
    • /
    • 2000
  • Boom sprayers have been known by their excellency in field efficiency worker’s safety and pest control efficacy. The boom sprayer in Korea that was developed for paddy field is not suitable for upland field of which shape is irregular and inclination is steep, due to heavy chemical tank long boom width and manual on-off control of spraying. The goal of the study was to develope a boom control system that could control boom angles of left and right boom automatically and independently corresponding to local field slope. The prime mover was selected as a cultivating tractor. Main results of this study were as follows. 1. Ultrasonic sensor whose response time was 0.1s and response angle was within $\pm$20$^{\circ}$was selected to measure distance. Voltage output of the sensor(X, Volt) had a highly significant linear relationship with the vertical distance between the sensor and ground surface(Y, mm) as follows; Y=0.0036X-0.437 2. Left and right section of the boom could be folded up by a position control device(on-off control) which could control the left and right boom independently corresponding to local slope by equalizing distances between the sensor and boom at the center and left/right boom. Most reliable DB(dead band) was experimentally selected to be 75$\Omega$(6cm). 3. At traveling velocity of 0.3~0.5m/s RMS of error between desired and achieved height was less than 4.5cm The developed boom angle controller and boom linkage system were evaluated to be successful in achieving the height control accuracy target of $\pm$10cm.

  • PDF

Simultaneous Driving System of Ultrasonic Sensors Using Codes (코드를 이용한 초음파 동시구동 시스템)

  • 김춘승;최병준;이상룡;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

Development of Fiber-Optic AE Sensor for On-Line Monitoring System (광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발)

  • Nam, Jae-Yeong;Jeong, Jae-Hyeon;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator (엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템)

  • Min-ho Lee;Kun-woo Na;Seungoh Han
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

Internet Based Remote Control of a Mobile Robot (인터넷 기반 이동로봇의 원격제어)

  • Choi, Mi-Young;Park, Jang-Hyun;Kim, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.502-504
    • /
    • 2004
  • With rapidly growing of computer and internet technology, Internet-based tote-operation of robotic systems has created new opportunities in resource sharing, long-distance learning, and remote experimentation. In this paper, remote control system of a mobile robot through the internet has been designed. The internet users can access and command a mobile robot in the real time, receiving the robot's sensor data. The overall system has been tested and its usefulness shown through the experimental results.

  • PDF

A Development of Ultrasonic Based Distance Meter Through Detachment of Receiving and Transmitting Capacitive Ultrasonic Transducer (송.수신 분리형 초음파 거리 측정기 개발)

  • Kim Jung-Hoon;Chong Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.41-50
    • /
    • 2006
  • This paper presents a novel ultrasonic sensor system to overcome limited distance detection range that can be measured only more than 30cm by single ultrasonic transducer. This is accomplished by separation of receiving capacitive ultrasonic transducer from transmitting capacitive ultrasonic transducer. And hardwares and software of the system are described in detail. The system makes very close range as well as long range detect by wireless precisely. Frequency of trigger pulse is 10Hz, but it is very low frequency for transmitting data in wireless module. Therefore, for triggering between receiver and transmitter, an algorithm for mixing and distinguishing trigger pulse from carrier pulse by software is proposed. The system is designed by common microprocessor 8051. The performance of the proposed method has been assessed through two types. The first, transmitting and receiving transducer are put on both sides. And then, distance of two point is measured as far as 0mm. Secondly, transmitting transducer send out ultrasonic pulse and measure the time of flight(TOF) until a first echo from an object detected by the detached receiving transducer. The distance between the detached transducers and a reflecting object is measured as far as 7cm. Images of measured ultrasonic waves and TOF for two methods presented to prove effectiveness of results.

A Framework for Human Body Parts Detection in RGB-D Image (RGB-D 이미지에서 인체 영역 검출을 위한 프레임워크)

  • Hong, Sungjin;Kim, Myounggyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1927-1935
    • /
    • 2016
  • This paper propose a framework for human body parts in RGB-D image. We conduct tasks of obtaining person area, finding candidate areas and local detection in order to detect hand, foot and head which have features of long accumulative geodesic distance. A person area is obtained with background subtraction and noise removal by using depth image which is robust to illumination change. Finding candidate areas performs construction of graph model which allows us to measure accumulative geodesic distance for the candidates. Instead of raw depth map, our approach constructs graph model with segmented regions by quadtree structure to improve searching time for the candidates. Local detection uses HOG based SVM for each parts, and head is detected for the first time. To minimize false detections for hand and foot parts, the candidates are classified with upper or lower body using the head position and properties of geodesic distance. Then, detect hand and foot with the local detectors. We evaluate our algorithm with datasets collected Kinect v2 sensor, and our approach shows good performance for head, hand and foot detection.

A Design and Implementation of Object Recognition based Interactive Game Contents using Kinect Sensor and Unity 3D Engine (키넥트 센서와 유니티 3D 엔진기반의 객체 인식 기법을 적용한 체험형 게임 콘텐츠 설계 및 구현)

  • Jung, Se-hoon;Lee, Ju-hwan;Jo, Kyeong-Ho;Park, Jae-Seong;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1493-1503
    • /
    • 2018
  • We propose an object recognition system and experiential game contents using Kinect to maximize object recognition rate by utilizing underwater robots. we implement an ice hockey game based on object-aware interactive contents to validate the excellence of the proposed system. The object recognition system, which is a preprocessor module, is composed based on Kinect and OpenCV. Network sockets are utilized for object recognition communications between C/S. The problem of existing research, degradation of object recognition at long distance, is solved by combining the system development method suggested in the study. As a result of the performance evaluation, the underwater robot object recognized all target objects (90.49%) with 80% of accuracy from a 2m distance, revealing 42.46% of F-Measure. From a 2.5m distance, it recognized 82.87% of the target objects with 60.5% of accuracy, showing 34.96% of F-Measure. Finally, it recognized 98.50% of target objects with 59.4% of accuracy from a 3m distance, showing 37.04% of F-measure.