• Title/Summary/Keyword: Long short-term memory (LSTM)

Search Result 523, Processing Time 0.028 seconds

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Prediction of Battery Package Temperature Rise with LSTM(Long Short-Term Memory) (LSTM(Long Short-Term Memory)을 활용한 Battery Package 온도 상승 예측)

  • Cho Jong Hwa;Min Youn A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.339-341
    • /
    • 2024
  • 본 논문에서는 전기 자동차 배터리 팩 설계에서 성능 예측을 위해 전산유체해석 및 Long Short-Term Memory (LSTM)를 활용한다. 두 계산 모두의 예측이 상당한 유사성을 나타내며, 전산유체해석은 시스템 유체 역학을 고려한 상세한 물리 모델을 제공하고, LSTM은 시계열 데이터를 기반으로 한 딥러닝 모델로 효과적으로 패턴을 파악, 향후 온도 상승을 예측한다. 결과는 두 접근 모두가 효과적인 예측을 제공하며 향후 전기 자동차 배터리 팩 설계 및 최적화에서 종합적인 접근의 필요성을 강조한다. 특히, LSTM 기반 예측에 소요되는 시간은 계산 유체 역학의 약 25%로, 약 일주일 정도로 빠르게 확인 가능하다. 이는 현대 산업 환경에서 시간적 효율성이 중요한 측면을 강조하며, 계산 유체 역학의 상세한 물리 모델링과 LSTM의 빠른 예측 속도를 결합한 설계 방법론을 제안한다.

  • PDF

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

Reproduction of Long-term Memory in hydroclimatological variables using Deep Learning Model

  • Lee, Taesam;Tran, Trang Thi Kieu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.101-101
    • /
    • 2020
  • Traditional stochastic simulation of hydroclimatological variables often underestimates the variability and correlation structure of larger timescale due to the difficulty in preserving long-term memory. However, the Long Short-Term Memory (LSTM) model illustrates a remarkable long-term memory from the recursive hidden and cell states. The current study, therefore, employed the LSTM model in stochastic generation of hydrologic and climate variables to examine how much the LSTM model can preserve the long-term memory and overcome the drawbacks of conventional time series models such as autoregressive (AR). A trigonometric function and the Rössler system as well as real case studies for hydrological and climatological variables were tested. Results presented that the LSTM model reproduced the variability and correlation structure of the larger timescale as well as the key statistics of the original time domain better than the AR and other traditional models. The hidden and cell states of the LSTM containing the long-memory and oscillation structure following the observations allows better performance compared to the other tested conventional models. This good representation of the long-term variability can be important in water manager since future water resources planning and management is highly related with this long-term variability.

  • PDF

Classification of Behavior of UTD Data using LSTM Technique (LSTM 기법을 적용한 UTD 데이터 행동 분류)

  • Jeung, Gyeo-wun;Ahn, Ji-min;Shin, Dong-in;Won, Geon;Park, Jong-bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.477-479
    • /
    • 2018
  • This study was carried out to utilize LSTM(Long Short-Term Memory) technique which is one kind of artificial neural network. Among the 27 types of motion data released by the UTD(University of Texas at Dallas), 3-axis acceleration and angular velocity data were applied to the basic LSTM and Deep Residual Bidir-LSTM techniques to classify the behavior.

  • PDF

6-Parametric factor model with long short-term memory

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.521-536
    • /
    • 2021
  • As life expectancies increase continuously over the world, the accuracy of forecasting mortality is more and more important to maintain social systems in the aging era. Currently, the most popular model used is the Lee-Carter model but various studies have been conducted to improve this model with one of them being 6-parametric factor model (6-PFM) which is introduced in this paper. To this new model, long short-term memory (LSTM) and regularized LSTM are applied in addition to vector autoregression (VAR), which is a traditional time-series method. Forecasting accuracies of several models, including the LC model, 4-PFM, 5-PFM, and 3 6-PFM's, are compared by using the U.S. and Korea life-tables. The results show that 6-PFM forecasts better than the other models (LC model, 4-PFM, and 5-PFM). Among the three 6-PFMs studied, regularized LSTM performs better than the other two methods for most of the tests.

Study of Fall Detection System of Long Short-term Memory Using Yolo-pose (Yolo-pose를 이용한 장단기 메모리의 낙상감지 시스템 연구)

  • Jeong, Seung Su;Kim, Nam Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.123-125
    • /
    • 2022
  • In this paper, we introduce a system applied to long short-term memory using Yolo-pose. Using Yolo-pose from image data, data divided into daily life and falls are extracted and applied to LSTM for learning. In order to prevent overfitting, training is performed 8 to 2 validation and is represented by a confusion matrix. The result of Yolo-pose recorded 100% of both sensitivity and specificity, confirming that daily life and falls were well distinguished.

  • PDF

Prediction of time-series underwater noise data using long short term memory model (Long short term memory 모델을 이용한 시계열 수중 소음 데이터 예측)

  • Hyesun Lee;Wooyoung Hong;Kookhyun Kim;Keunhwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.

Study of fall detection for the elderly based on long short-term memory(LSTM) (장단기 메모리 기반 노인 낙상감지에 대한 연구)

  • Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.249-251
    • /
    • 2021
  • In this paper, we introduce the deep-learning system using Tensorflow for recognizing situations that can occur fall situations when the elderly are moving or standing. Fall detection uses the LSTM (long short-term memory) learned using Tensorflow to determine whether it is a fall or not by data measured from wearable accelerator sensor. Learning is carried out for each of the 7 behavioral patterns consisting of 4 types of activity of daily living (ADL) and 3 types of fall. The learning was conducted using the 3-axis acceleration sensor data. As a result of the test, it was found to be compliant except for the GDSVM(Gravity Differential SVM), and it is expected that better results can be expected if the data is mixed and learned.

  • PDF

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF