• Title/Summary/Keyword: Long Fiber

Search Result 1,013, Processing Time 0.027 seconds

Mechanical, Electrical and Thermal Properties of Polymer Composites Containing Long Carbon Fibers and Multi-walled Carbon Nanotubes (탄소장섬유와 다중벽 탄소나노튜브가 혼입된 고분자 복합재료의 기계적, 전기적 및 열적 특성)

  • Min Su Kim;Ki Hoon Kim;Bo-kyung Choi;Jong Hyun Park;Seong Yun Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2024
  • Mechanical, electrical and thermal properties of polymer composites can be improved simultaneously by incorporating carbon fibers (CFs), which are beneficial for improving the mechanical properties, and multi-walled carbon nanotubes (MWCNTs), which are advantageous for improving the conductive properties. In this study, MWCNTs were incorporated into carbon long fiber thermoplastic (CLFT), which has excellent mass production processability and excellent mechanical properties, to control electrical and thermal properties. The mechanical and electrical properties of the prepared composites were most significantly influenced by the amount of filler incorporated. On the other hand, the thermal properties were improved due to the formation of a filler network interconnected by the incorporation of MWCNTs. By adjusting the filler amount, filler composition, and filler network structure of MWCNT-incorporated CLFT, the mechanical, electrical, and thermal properties could be controlled.

A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures

  • Dongmei Chen;Yueshun Chen;Lu Ma;Md. Habibur Rahman Sobuz;Md. Kawsarul Islam Kabbo;Md. Munir Hayet Khan
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.293-310
    • /
    • 2024
  • Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a form of cement-based material that has a compressive strength above 150 MPa, excellent ductility, and superior durability. This composite material demonstrates innovation and has the potential to serve as a viable substitute for concrete constructions that are subjected to harsh environmental conditions. Over many decades, extensive research and progressive efforts have introduced several commercial UHPFRC compositions globally. These compositions have been specifically designed to cater to an increasing variety of applications and meet the rising need for building materials of superior quality. However, the effective manufacturing of UHPFRC relies on the composition of its materials, especially the inclusion of fiber content and the proportions in the mixture, resulting in a more compact and comparatively uniform packing of particles. UHPFRC has notable benefits in comparison to conventional concrete, yet its use is constrained by the dearth of design codes and the prohibitive expenses associated with its implementation. The study demonstrates that UHPFRC presents a viable, long-lasting option for improving sustainable construction. This is attributed to its outstanding strength properties and superior durability in resisting water and chloride ion permeability, freeze-thaw cycles, and carbonation. The analysis found that a rheology-based mixture design technique may be employed in the production of UHPFRC to provide enough flowability. The study also revealed that the use of deformed steel fibers has shown enhanced mechanical qualities in comparison to straight steel fibers. However, obstacles such as higher initial costs, the requirement for highly specialized personnel, and the absence of comprehensive literature on global UHPFRC standards that establish minimum strength criteria and testing requirements can hinder the widespread implication of UHPFRC. Finally, this review attempts to deepen our foundational conception of UHPFRC, encourages additional study and applications, and recommends an in-depth investigation of the mechanical and durability properties of UHPFRC to maximize its practicality.

A Study on the Physical Properties of Recycled Asphalt Mixtures Using Glass Fiber Reinforcement (유리섬유 보강재를 이용한 재활용 아스팔트 혼합물의 물리적 특성에 관한 연구)

  • Park, Ki Soo;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the physical properties of recycled asphalt mixtures reinforced with glass fiber. METHODS : Firstly, mixing design was conducted on recycled asphalt mixture for use of 50% recycled aggregate. Various laboratory tests were performed on four types of recycled asphalt mixtures with different glass fiber content to evaluate the physical properties. The laboratory tests include indirect tensile strength test, dynamic modulus test, Hamburg wheel tracking test and tensile-strength ratio to evaluate cracks, rutting and moisture resistance of mixtures. RESULTS : The indirect tensile strength of fiber reinforced glass increased about 139.4%. As a result of comparing the master curves obtained by the dynamic modulus test, the elasticity was low in the low temperature region and high in the high temperature region when the glass fiber was reinforced. The glass fiber contents of PEGS 0.3%, Micro PPGF 0.1% and Macro PPGF 0.3% showed the highest moisture resistance and rutting resistance. CONCLUSIONS : The test results show that use of glass fiber reinforcement can increase the resistance to cracking, rutting, and moisture damage of asphalt mixtures. It is also necessary to validate the long-term performance of recycled asphalt mixtures with glass fiber using full scale pavement testing and field trial construction.

Application of fiber optic BOTDA sensor for measuring the temperature distributed on the surfaces of a building (빌딩표면에 분포된 온도를 측정하기 위한 광섬유 BOTDA센서의 적용)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Park, Man-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.505-510
    • /
    • 2002
  • We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4℃ through one day.

  • PDF

Effects of Steel Fiber Concrete (鋼纖維에 의한 콘크리트의 補强效果)

  • Koh, Chae-Koon;Kim, Moon-Ki;Rhee, Shin-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.47-56
    • /
    • 1985
  • Wasting fiberous residues from the cutting processes of steel materials at an iron-Works were mixed with concrete. The strength and toughness of steel fiber concrete with different steel contents were tested in a laboratory. The test results showed that the steel fiber residues can be used for the reinforcement of concrete. The potential applications of such product include floor constructions for facilities like dairy barns, grain storages, and machinery shops. The test results are as follows. 1. The compressive strengths of steel fiber concrete with one percent steel content by volume were 20 percent greater than that of plain concrete. The treatments also increased the concrete toughness by 96 percent. 2. When applied to tensile forces, the steel fiber concrete showed the increased strengths by 20 percent, and the toughness by 48 percent. 3. The steel content levels greater than or equal to 1.5 percent by volume resulted in the decreases of the compressive and tensile strengths of steel fiber concrete by 10 percent as compared to plain concrete. The concrete toughness increased with the steel contents. 4. The reinforcement effects of steel fiber depend on the quality of fiber material being used. Good steel fiber for concrete reinforcement appears to be uniform in shape and component, fine and long, and round-shaped.

  • PDF

Mode Coupling within Inner Cladding Fibers

  • Lee, Byeong-Ha;Eom, Tae-Jung;Kim, Myoung-Jin;Paek, Un-Chul;Park, Tae-Sang
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 2003
  • We report the formation of inner cladding modes in the optical fiber having an inner cladding structure. The inner cladding layer located between the core- and the cladding- layers of a conventional fiber might have, so called, inner cladding mode(s). The brief history of the inner cladding fiber and the spectral properties of the inner cladding mode are presented. By utilizing fiber gratings, the spectral properties of the inner cladding mode formed in Dispersion Compensating Fiber (DCF) are discussed. It was observed that one resonant peak of a long-period fiber grating was not sensitive to the variation on the cladding surface. With a fiber Bragg grating, a small group of unusual resonant Peaks was observed between the main Bragg Peak and the series of usual Peaks resulted from the mode coupling to counter-propagating cladding modes. Within the DCF by using fiber gratings, it is noted, at least one mode can be coupled to the inner cladding mode and a few outer cladding modes are severely affected by the inner cladding of the fiber.

Recycle of the Glass Fiber Obtained from the Roving Cloth of FRP I: Study for the Physical Properties of Fiber-reinforced Mortar (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 I: 섬유강화 모르타르의 물성에 관한 연구)

  • Yoon, Koo-Young;Kim, Yong-Seop;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 2007
  • While the effort has been made in recycling the FRP (Fiber Reinforced Plastic) used for the medium-to-small size ships, researchers try to find out the methods more favorable for the environments and more value-added. In respect to the fact that the FRP consists of two types of layers, roving and mat, differentiated by the 2-dimensional structure, our group was able to separate the layers of FRP instead of grinding it. The roving cloth was cut to the long glass fibers (about 50 mm long; calling it 'F-fiber' afterwards). F-fiber showed increasing tensile strength and chemical-resistance possibly due to the remained resin (about 25% by weight). In this experiment fiber-reinforced mortars are made of the F-fiber as a recycling method of FRP. The mortar containing 2% (v/v) F-fiber results in 34.6% increment of bending strength from the standard after 28 day curing. The resulting strength is similar to that of the mortar with imported polyvinyl fiber P-54. These results imply that F-fiber can be applied to the 'fiber reinforced mortar' and furthermore may be a substitute for the imported fibers.

  • PDF