• Title/Summary/Keyword: Long Chain Fatty Acids

Search Result 188, Processing Time 0.028 seconds

Genome wide association study of fatty acid composition in Duroc swine

  • Viterbo, Vanessa S.;Lopez, Bryan Irvine M.;Kang, Hyunsung;Kim, Hoonseop;Song, Choul-won;Seo, Kang Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1127-1133
    • /
    • 2018
  • Objective: Genome wide association study was conducted to identify and validate candidate genes associated with fatty acid composition of pork. Methods: A total of 480 purebreed Duroc pigs were genotyped using IlluminaPorcine60k bead chips while the association test was implemented following genome-wide rapid association using Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. Results: A total of 25, 29, and 16 single nucleotide polymorphisms (SNPs) were significantly associated with stearic (18:0), oleic (18:1) and saturated fatty acids (SFA), respectively. Genome wide significant variants were located on the same region of swine chromosome 14 (SSC14) that spanned from 120 to 124 Mb. Top SNP ALGA008191 was located at 5 kb near the stearoyl-CoA desaturase (SCD) gene. This gene is directly involved in desaturation of stearic acid into oleic acid. General relationship of significant SNPs showed high linkage disequilibrium thus genome-wide signals was attributed to SCD gene. However, understanding the role of other genes like elongation of very long chain fatty acids-3 (ELOVL3) located on this chromosomal segment might help in further understanding of metabolism and biosynthesis of fatty acids. Conclusion: Overall, this study provides evidence that validates SCD gene as strong candidate gene associated with fatty acid composition in Duroc pigs. Moreover, this study confirms significant SNPs near ELOVL3 gene.

Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus

  • Jo, Eunhye;Kim, Jihye;Lee, Areum;Moon, Keumok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.483-491
    • /
    • 2021
  • Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDS-PAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50℃ and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and insilico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.

Effect of dietary supplementation with Spirulina on the expressions of AANAT, ADRB3, BTG2 and FASN genes in the subcutaneous adipose and Longissimus dorsi muscle tissues of purebred and crossbred Australian sheep

  • Kashani, Arash;Holman, Benjamin William Behrens;Nichols, Peter David;Malau-Aduli, Aduli Enoch Othniel
    • Journal of Animal Science and Technology
    • /
    • v.57 no.3
    • /
    • pp.8.1-8.8
    • /
    • 2015
  • Background: The demand for healthy, lean and consistent meat products containing low saturated fatty acid content and high quality polyunsaturated fatty acids (PUFA), especially long-chain (${\geq}C_{20}$) omega-3 PUFA, has increased in recent times. Fat deposition is altered by both the genetic background and dietary supplements, and this study aimed to assess the effect of dietary Spirulina supplementation levels on the mRNA expression patterns of genes controlling lipid metabolism in the subcutaneous adipose tissue (SAT) and Longissimus dorsi (ld) muscle of Australian crossbred sheep. Methods: Twenty-four weaned lambs belonging to four breeds under the same management conditions were maintained on ryegrass pasture and fed three levels of Spirulina supplement (control, low and high). In terms of nutrient composition, Spirulina is a nutrient-rich supplement that contains all essential amino acids, vitamins and minerals. It also is a rich source of carotenoids and fatty acids, especially gamma-linolenic acid (GLA) that infer health benefits. After slaughter, subcutaneous adipose tissue (SAT) and ld samples were subjected to mRNA extraction and reverse transcription using quantitative polymerase chain reaction (RT-qPCR) to assess the mRNA expression levels of the Aralkylamine N-acetyltransferase (AANAT), Adrenergic beta-3 receptor (ADRB3), B-cell translocation gene 2 (BTG2) and Fatty acid synthase (FASN) genes, which are associated with lipid metabolism. Results: Both low and high Spirulina supplementation levels strongly up-regulated the transcription of all the selected genes in both SAT and ld tissues (mostly in the subcutaneous adipose), but sheep breed and sex did not influence the gene expression patterns in these tissues. Conclusions: The evidence indicates that high Spirulina supplementation level resulted in a decrease in intramuscular fat content in Australian purebred and crossbred sheep due to the enhanced production of melatonin in sheep muscle tissues and strong up-regulation of mRNA expression of BTG2 in SAT which negatively affected fat deposition. In contrast, low Spirulina supplementation level strongly up-regulated the ADRB3 and FASN genes responsible for fat production. These findings are consistent with the observed phenotypic data suggesting that low Spirulina supplementation level can increase lamb production, with higher long-chain PUFA content.

Phytochemical Studies on Paeoniae Radix (4);Cerebrosides and Other Constituents

  • Kim, Yoon-Jung;Yean, Min-Hye;Lee, Eun-Ju;Kim, Ju-Sun;Lee, Je-Hyun;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • A mixture of sixteen cerebrosides, which comprised four cerebroside molecular species (PL-1 ${\sim}$ PL-4) was separated from the roots of Paeonia lactiflora. The structures of cerebrosides were characterized as $1-O-{\beta}$-D-glucopyranosides of phytosphingosines, which comprised a common long-chain base, (2S,3S,4R,8E/Z)-2-amino-8-octadecene-1,3,4-triol with eight fatty acids or 2-hydroxy fatty acids of varying chain lengths ($C_{16}$, $C_{18}$, $C_{20-26}$) linked to the amino group. Aralia cerebroside and its 8Z isomer (PL-1), $1-O-{\beta}$-D-glucopyranosyl-(2S,3S, 4R,8E/Z)-2-[(2'R)-2'-hydroxytetracosanoylamino]-8-octadecene-1,3,4-triol (PL-2), $1-O-{\beta}$-D-glucopyranosyl-(2S,3S,4R, 8E/Z)-2-[(2'R)-2'-hydroxydocosanoylamino]-8-octadecene-1,3,4-triol (PL-3), and $1-O-{\beta}$-D-glucopyranosyl-(2S,3S,4R, 8E/Z)-2-[(2'R)-2'-hydroxytricosanoylamino]-8-octadecene-1,3,4-triol (PL-4) were identified as major components of these cerebroside molecular species. All the major cerebrosides were shown to be a mixture of geometrical isomers (8E and 8Z) of phytosphingosine-type glucocerebrosides possessing 2R-hydroxy fatty acids. In addition, three ${\beta}-sitosterol$ derivatives and adenosine were also separated. The structures of these isolates have been determined on the basis of chemical and spectroscopic evidence.

Mechanism of Fatty Acid Transfer between Fatty Acid Binding Proteins and Phospolipid Model Membranes (지방산 결합단백질과 인지질막 사이의 지방산이동기전)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.930-935
    • /
    • 1997
  • Fatty acid binging proteins(FABP) are distinct but related gene productes which are found in many mamalian cell types. FABP bind long chain fatty acids in vitro. However, their functions and mechanisms of action, in vivo, remain unknown . Also not known is whether all FABP function similaryly in their respective cell types. or whether different FABP have unique functions. The puropose of the present study was to assess whether different members of the FABP family exhibit different structural and function properties. A comparison was made between heart(H-FABP) and liver (L-FABP). The results show that the binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Additionally, the bound ligand experiences less motional constraint within the H-FABP binding site than within the L-FABP binding site. In accordance with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from H-FABP to membranes is markedly faster than from L-FABP. moreover, the mechanism of fatty acid transfer to phospholipid membranes appears to occur via transient collisional interactions between H-FABP and membranes. In contrast , transfer of fatty acid from L-FABP occurs via an aqueous diffusion mechanism.

  • PDF

The Synthesis and Micelle Formation for ${\alpha}-Sulfo$ Fatty Acid Polyol Esters (알파 술폰지방산 다가알코올 에스테르류의 합성 및 미셀형성거동)

  • Jeong, No-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 1998
  • In recent years, there has been considerable interest in the development of new functional surfactant including new type of anionic surfactants. Anionic surfactants, ${\alpha}-sulfo$ fatty acids that straight long chain alkyl group having from 12 to 18 carbon atoms, were synthesized with sulfur trioxide-dioxane complex to good yield. Xylitol ${\alpha}-sulfo$ fatty acid esters were obtained by reaction that the acetification and esterification of xylitol, by addition reaction with sodium chloride and hydrolysis respectively. These compounds were a new group of destructible surfactants which readily hydrolyzed and oxidized in natural water reservoirs. Physical properties of these new compounds involved surface tension, critical micelle concentration(cmc), foaming power, emulsion power, and hydrolysis properties, were measured. The cmc values of the compounds by ring method were assumed to $7.0{\times}10^{-3}{\sim}3.0{\times}10^{-2}mol/{\ell}$ range and surface tensions at cmc were $25{\sim}31dyne/cm$ respectively.

수분 stress에 대한 식물의 반응과 내건성

  • 권기환
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.83-96
    • /
    • 1985
  • cDNAs for long- and short-chain acyl-CoA oxidases in fatty acid $\beta$-oxidation were isolated and were characterized their enzymatical and molecular properties. Both oxidases were exclusively localized in glyoxysomes, indicating that glyoxysomes can completely metabolize fatty acids to acyl-CoA by their cooperative action. In order to clarify the regulatory mechanisms underlying degradation of storage oil, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid $\beta$-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designated pedl, ped2, and ped3, respectively (where ped stands for peroxisome defective). The characteristics of these ped mutants are described.

  • PDF

Assay System for N-acylethanolamines Degradation Enzyme, N-acylethanolamine-hydrolyzing Acid Amidase

  • Kim, Dae-Woong;Kim, Gun-Joong;Kim, Hae-Jo;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.438-444
    • /
    • 2012
  • N-acylethanolamines (NAEs) including endocannabinoids, anadamide, are long chain fatty acid ethanolamines and express ubiquitously in animal and plant tissues. NAEs have several pharmacological effects including anti-inflammatory, analgesic and anorexic effects. The levels of NAEs in tissues are strictly regulated by synthesizing and hydrolyzing enzymes because NAEs are not stored in the cell but rather made on demand. NAEs are hydrolyzed to free fatty acids and ethanolamines by fatty acid amide hydrolase and N-acylethanolamine-hydrolyzing acid amidase (NAAA). Here, we suggest the fluorescence-based assay system for NAAA. We developed N-(4-methy-2-oxo-2H-chromen-7-yl)palmitamide (PAAC) as a fluorogenic substrate for NAAA and we also generated NAAA stably expressing COSM6 cell line. When extracts of cells expressing NAAA were incubated with PAAC, NAAA specifically hydrolyzed PAAC to palmitic acids and fluorogenic dye, coumarin. Release of coumarin was monitored by using fluorometer. NAAA hydrolyzed PAAC with an apparent Km of $20.05{\mu}M$ and Vmax of 32.18 pmol/mg protein/min. This assay system can be used to develop inhibitors or activators of NAAA.

Current Trend and Perspective of Research and Development on Biologically - Active Livestock Products (생리활성을 강화한 기능성 축산식품의 연구개발 동향과 전망)

  • 이복희
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.257-271
    • /
    • 1996
  • Livestock products like meat, milk and egg have been principal food sources for human beings since the historic periods of time. Nowadays consumption of these food items have been avoided due to its high contents of SFA, cholesterol and total fat which are major culprits of chronic adult diseases causing major deaths of people. However, the relationship between livestock products and diseases is not always true because the amounts of fat and cholesterol and types of fatty acids in meat and meat by-products depend on the part of the meat and types of animals. Although meat intakes do not always cause mai or adult diseases, still the developmental necessity does exist for animal foods equipped with biologically active properties, which in turn can improve nutritional status and health more than ever Meat with high protein lean part and low fat can be produced by applying synthetic somatotropin and beta-adrenergic agonists like clenbuterol, cimaterol etc. during breeding. This application brings benefits like higher growth rate, lower fat contents and improve feed efficiency ratios. Meats fortified with long chain PUFA($\omega$-3 fatty acids) can also be produced by modulating feed composition.Egg Products have faced the reduced sales annually because of its high cholesterol contents. Recently brand eggs fortified with special nutrients or chemical components having functional proper ties in the human body system are very popular Research Interests have been focused on eggs with low cholesterol and high omega-3 fatty acids. Low cholesterol eggs and high omega-3 eggs can be produced in several different ways, but popular way to increase is feeding the feeds with different oil sources containing high omega-3 and 6 fatty acids such as fish oil, perilla oil, linseed oil and lecithin etc. But proper compositon of feed formula should be found and economically beneficial. Brand eggs fortified with vitamin, mineral, unknown growth factors are also manufactured. Low cholesterol and high $\omega$-3 PUFA milk are marketed recently Cholesterol removal technology is not completely established and has several limitations to be overcome. Milk fortified with $\omega$-3 fatty acids is made by incorporating high &13 fatty acid foods in feed despite of extraordinary way of fatty acid metabolism In cow. All these biologically active products will be very beneficial and useful for human consumption when limitations of manufacturing technology such as safety and lowered sensory qualities are resolved. Furthermore, thorough and precise tests and quality control for these products should be performed to ensure the effectiveness and usefulness in terms of improving health and nutritional status in general. However one caution should be pointed out to lay people informing that these items are nothing but a food and not panacea. Therefore, it is important to remember that the only way of maintaining good health is absolutely through consuming balanced diet.

  • PDF

Rapid Gas Chromatographic Screening of Vegetable Oils for Free Fatty Acids (기체크로마토그래피법에 의한 식물성 유지내 유리 지방산의 신속한 스크리닝)

  • Kim, Jung-Han;Kim, Kyoung-Rae;Chai, Jeong-Young;Oh, Chang-Hwan;Park, Hyung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.373-378
    • /
    • 1993
  • A rapid gas chromatographic profiling method for the simultaneous analysis of free fatty and other acids was applied to vegetable oils. Oil samples were dissolved in dichloromethane and the free acids were extracted with saturated $NaHCO_3$ solution. The aqueous extract was acidified and then loaded onto the Chromosorb P column for the extraction. The acids were eluted with diethyl ether selectively from Chromosorb P column and were treated with triethylamine to prevent the losses of volatile acids. Several long chain fatty acids were detected from soybean oil, rice-bran oil, sesame oil and perilla oil. Various organic acids including odd number fatty acids were detected in crude oil, especially sesame oil. Arachidic acid from perilla oil and vanillic acid from sesame oil, which were not reported before were detected. The content ratio of free linoleic acid to oleic acid was $1.02{\sim}1.18$, which was similar to the reported data. When the GC profile of organic acids were simplified to their corresponding retention index spectra of bar graphical forms, they presented characteristic pattern of each vegetable oil that can be quickly recognized.

  • PDF