Assay System for N-acylethanolamines Degradation Enzyme, N-acylethanolamine-hydrolyzing Acid Amidase

  • Kim, Dae-Woong (Department of Life Science, Kyonggi University) ;
  • Kim, Gun-Joong (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Hae-Jo (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Ghil, Sung-Ho (Department of Life Science, Kyonggi University)
  • Received : 2012.08.21
  • Accepted : 2012.09.21
  • Published : 2012.12.31

Abstract

N-acylethanolamines (NAEs) including endocannabinoids, anadamide, are long chain fatty acid ethanolamines and express ubiquitously in animal and plant tissues. NAEs have several pharmacological effects including anti-inflammatory, analgesic and anorexic effects. The levels of NAEs in tissues are strictly regulated by synthesizing and hydrolyzing enzymes because NAEs are not stored in the cell but rather made on demand. NAEs are hydrolyzed to free fatty acids and ethanolamines by fatty acid amide hydrolase and N-acylethanolamine-hydrolyzing acid amidase (NAAA). Here, we suggest the fluorescence-based assay system for NAAA. We developed N-(4-methy-2-oxo-2H-chromen-7-yl)palmitamide (PAAC) as a fluorogenic substrate for NAAA and we also generated NAAA stably expressing COSM6 cell line. When extracts of cells expressing NAAA were incubated with PAAC, NAAA specifically hydrolyzed PAAC to palmitic acids and fluorogenic dye, coumarin. Release of coumarin was monitored by using fluorometer. NAAA hydrolyzed PAAC with an apparent Km of $20.05{\mu}M$ and Vmax of 32.18 pmol/mg protein/min. This assay system can be used to develop inhibitors or activators of NAAA.

Keywords

References

  1. Ahn K, Johnson DS, Fitzgerald LR, Liimatta M, Arendse A, Stevenson T, Lund ET, Nugent RA, Nomanbhoy TK, Alexander JP, Cravatt BF. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry 2007. 46: 13019-13030. https://doi.org/10.1021/bi701378g
  2. Boldrup L, Wilson SJ, Barbier AJ, Fowler CJ. A simple stopped assay for fatty acid amide hydrolase avoiding the use of a chloroform extraction phase. J Biochem Biophys Methods. 2004. 60: 171-177. https://doi.org/10.1016/j.jbbm.2004.04.020
  3. Calignano A, La Rana G, Piomelli D. Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur J Pharmacol. 2001. 419: 191-198. https://doi.org/10.1016/S0014-2999(01)00988-8
  4. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996. 384: 83-87. https://doi.org/10.1038/384083a0
  5. Cravatt BF, Lichtman AH. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol. 2003. 7: 469-475. https://doi.org/10.1016/S1367-5931(03)00079-6
  6. Darmani NA, Izzo AA, Degenhardt B, Valenti M, Scaglione G, Capasso R, Sorrentini I, Di Marzo V. Involvement of the cannabimimetic compound, N-palmitoyl-ethanolamine, in inflammatory and neuropathic conditions: review of the available pre-clinical data, and first human studies. Neuropharmacology 2005. 48: 1154-1163. https://doi.org/10.1016/j.neuropharm.2005.01.001
  7. Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993. 46: 791-796. https://doi.org/10.1016/0006-2952(93)90486-G
  8. Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008. 7: 438-455. https://doi.org/10.1038/nrd2553
  9. Ganley OH, Graessle OE, Robinson HJ. Anti-inflammatory activity on compounds obtained from egg yolk, peanut oil, and soybean lecithin. J Lab Clin Med. 1958. 51: 709-714.
  10. Kim DW, Kim GJ, Kim HJ, Ghil SH. Fluorescence-based assay system for endocannabinoid degradation enzyme, fatty acid amide hydrolase. J Exp Biomed Sci. 2010. 16: 279-285.
  11. Kuehl Jr FA, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP. The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J Am Chem Soc. 1957. 79: 5577-5578. https://doi.org/10.1021/ja01577a066
  12. Lambert DM, Vandevoorde S, Jonsson KO, Fowler CJ. The palmitoylethanolamide family: a new class of antiinflammatory agents? Curr Med Chem. 2002. 9: 663-674. https://doi.org/10.2174/0929867023370707
  13. Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci. 2005. 62: 708-716. https://doi.org/10.1007/s00018-004-4494-0
  14. Maccarrone M, Bari M, Agro AF. A sensitive and specific radiochromatographic assay of fatty acid amide hydrolase activity. Anal Biochem. 1999. 267: 314-318. https://doi.org/10.1006/abio.1998.2964
  15. McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005. 74: 411-432. https://doi.org/10.1146/annurev.biochem.74.082803.133450
  16. Omeir RL, Chin S, Hong Y, Ahern DG, Deutsch DG. Arachidonoyl ethanolamide-[1,2-14C] as a substrate for anandamide amidase. Life Sci. 1995. 56: 1999-2005. https://doi.org/10.1016/0024-3205(95)00181-5
  17. Overton HA, Babbs AJ, Doel SM, Fyfe MCT, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006. 3: 167-175. https://doi.org/10.1016/j.cmet.2006.02.004
  18. Rahn EJ, Thakur GA, Wood JA, Zvonok AM, Makriyannis A, Hohmann AG. Pharmacological characterization of AM1710, a putative cannabinoid CB2 agonist from the cannabilactone class: antinociception without central nervous system sideeffects. Pharmacol Biochem Behav. 2011. 98: 493-502. https://doi.org/10.1016/j.pbb.2011.02.024
  19. Ramarao MK, Murphy EA, Shen MW, Wang Y, Bushell KN, Huang N, Pan N, Williams C, Clark JD. A fluorescence-based assay for fatty acid amide hydrolase compatible with highthroughput screening. Anal Biochem. 2005. 343: 143-151. https://doi.org/10.1016/j.ab.2005.04.032
  20. Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D. An anorexic lipid mediator regulated by feeding. Nature 2001. 414: 209-212. https://doi.org/10.1038/35102582
  21. Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M, Antonietti F, Duranti A, Tontini A, Cuzzocrea S, Tarzia G, Piomelli D. Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc Natl Acad Sci U S A. 2009. 106: 20966-20971. https://doi.org/10.1073/pnas.0907417106
  22. Sugiura T, Kishimoto S, Oka S, Gokoh M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res. 2006. 45: 405-446. https://doi.org/10.1016/j.plipres.2006.03.003
  23. Terrazzino S, Berto F, Dalle Carbonare M, Fabris M, Guiotto A, Bernardini D, Leon A. Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression. FASEB J. 2004. 18: 1580-1582. https://doi.org/10.1096/fj.03-1080fje
  24. Tsuboi K, Sun Y-X, Okamoto Y, Araki N, Tonai T, Ueda N. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem. 2005. 280: 11082-11092. https://doi.org/10.1074/jbc.M413473200
  25. Tsuboi K, Takezaki N, Ueda N. Chem Biodivers. The N-acylethanolamine-hydrolyzing acid amidase (NAAA). 2007. 4: 1914-1925. https://doi.org/10.1002/cbdv.200790159
  26. Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res. 2010. 49: 299-315. https://doi.org/10.1016/j.plipres.2010.02.003
  27. Wang Y, Ramirez F, Krishnamurthy G, Gilbert A, Kadakia N, Xu J, Kalgaonkar G, Ramarao MK, Edris W, Rogers KE, Jones PG. High-throughput screening for the discovery of inhibitors of fatty acid amide hydrolase using a microsome-based fluorescent assay. J Biomol Screen. 2006. 11: 519-527. https://doi.org/10.1177/1087057106288188
  28. Wilson SJ, Lovenberg TW, Barbier AJ. A high-throughputcompatible assay for determining the activity of fatty acid amide hydrolase. Anal Biochem. 2003. 318: 270-275. https://doi.org/10.1016/S0003-2697(03)00217-3