• Title/Summary/Keyword: Location-based recommendation

Search Result 129, Processing Time 0.026 seconds

Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter (트위터의 감정 분석을 통한 실시간 장소 추천 시스템)

  • Oh, Pyeonghwa;Hwang, Byung-Yeon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • This paper proposes a system recommending spatial information what user wants with collecting and analyzing tweets around the user's location by using the GPS information acquired in mobile. This system has built an emotion dictionary and then derive the recommendation score of morphological analyzed tweets to provide not just simple information but recommendation through the emotion analysis information. The system also calculates distance between the recommended tweets and user's latitude-longitude coordinates and the results showed the close order. This paper evaluates the result of the emotion analysis in a total of 10 areas with two keyword 'Restaurants' and 'Performance.' In the result, the number of tweets containing the words positive or negative are 122 of the total 210. In addition, 65 tweets classified as positive or negative by analyzing emotions after a morphological analysis and only 46 tweets contained the meaning of the positive or negative actually. This result shows the system detected tweets containing the emotional element with recall of 38% and performed emotion analysis with precision of 71%.

The Implementation of a User Location and Preference-based Appointed Place Recommendation Mobile Application (사용자의 위치와 선호도에 기반한 약속 장소 추천 모바일 애플리케이션 구현)

  • Bae, Hyeji;Song, Jina;Lee, Yujin;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.6
    • /
    • pp.403-411
    • /
    • 2015
  • Nowadays, in the so-called 'smart era', people are likely to feel more comfortable in on-line meetings than in off-line meetings. However, on-line meetings are often considered unimportant and it is difficult for participants to share their feelings. This paper suggests a mobile application that can revitalize off-line meetings to address these problems. Wecok Application, which suggests the best meeting place by applying users' preferences and their locations, provides a function-oriented user interface and simple touch flow. Wecok consists of a client/server software, and currently supports only three users simultaneously. It enables exchange of off-line and on-line communication by expanding meetings from on-line to off-line. By using Wecok, users can easily decide on an off-line meeting place.

Context-aware based TV Application Services in Ubiquitous Computing Environments (유비쿼터스 컴퓨팅 환경에서 상황인식 기반 TV 응용 서버스)

  • Moon Ae-Kyung;Lee Kang-Woo;Kim Hyoung-Sun;Kim Hyun;Lee Soo-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.619-631
    • /
    • 2006
  • With the advent of ubiquitous computing environments, it has become increasingly important for applications to take full advantage of context information, such as the user's location, to offer greater services to the user without any explicit request. In this paper, we propose context-aware active services on the basis of CAMUS (Context-Aware Middleware for URC Systems). CAMUS is a middleware for providing context-aware applications with development and execution methodology. Accordingly, the applications developed by CAMUS respond in a timely fashion to contexts. To evaluate, we apply proposed active services to TV application domain. Therefore, we implement and experiment the TV contents recommendation service agent, control service agent and TV task based on CAMUS. The context-aware TV task is to recommend programs and control of TV according to user preference, location and voice commands.

A Development of Optimal Travel Course Recommendation System based on Altered TSP and Elasticsearch Algorithm (변형된 TSP 및 엘라스틱서치 알고리즘 기반의 최적 여행지 코스 추천 시스템 개발)

  • Kim, Jun-Yeong;Jo, Kyeong-Ho;Park, Jun;Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1108-1121
    • /
    • 2019
  • As the quality and level of life rise, many people are doing search for various pieces of information about tourism. In addition, users prefer the search methods reflecting individual opinions such as SNS and blogs to the official websites of tourist destination. Many of previous studies focused on a recommendation system for tourist courses based on the GPS information and past travel records of users, but such a system was not capable of recommending the latest tourist trends. This study thus set out to collect and analyze the latest SNS data to recommend tourist destination of high interest among users. It also aimed to propose an altered TSP algorithm to recommend the optimal routes to the recommended destination within an area and a system to recommend the optimal tourist courses by applying the Elasticsearch engine. The altered TSP algorithm proposed in the study used the location information of users instead of Dijkstra's algorithm technique used in previous studies to select a certain tourist destination and allowed users to check the recommended courses for the entire tourist destination within an area, thus offering more diverse tourist destination recommendations than previous studies.

Big data-based Local Store Information Providing Service (빅데이터에 기반한 지역 상점 관련 정보제공 서비스)

  • Mun, Chang-Bae;Park, Hyun-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.561-571
    • /
    • 2020
  • Location information service using big data is continuously developing. In terms of navigation, the range of services from map API service to ship navigation information has been expanded, and system application information has been extended to SNS and blog search records for each location. Recently, it is being used as a new industry such as location-based search and advertisement, driverless cars, Internet of Things (IoT) and online to offline (O2O) services. In this study, we propose an information system that enables users to receive information about nearby stores more effectively by using big data when a user moves a specific route. In addition, we have designed this system so that local stores can use this system to effectively promote it at low cost. In particular, we analyzed web-based information in real time to improve the accuracy of information provided to users by complementing the data. Through this system, system users will be able to utilize the information more effectively. Also, from a system perspective, it can be used to create new services by integrating with various web services.

Mobile App Recommendation using User's Spatio-Temporal Context (사용자의 시공간 컨텍스트를 이용한 모바일 앱 추천)

  • Kang, Younggil;Hwang, Seyoung;Park, Sangwon;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.615-620
    • /
    • 2013
  • With the development of smartphones, the number of applications for smartphone increases sharply. As a result, users need to try several times to find their favorite apps. In order to solve this problem, we propose a recommendation system to provide an appropriate app list based on the user's log information including time stamp, location, application list, and so on. The proposed approach learns three recommendation models including Naive-Bayesian model, SVM model, and Most-Frequent Usage model using temporal and spatial attributes. In order to figure out the best model, we compared the performance of these models with variant features, and suggest an hybrid method to improve the performance of single models.

Context-aware Protype for Adaptive Recommendation Service on Mobile (모바일 환경에서 능동적 추천 서비스를 위한 상황인식 프로토타입)

  • Chang, Hyo-Kyung;Kang, Yong-Ho;Choi, Eui-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.257-264
    • /
    • 2012
  • The development of mobile devices and the spread of wireless network help share and exchange information and resources more easily. The bond them to Cloud Computing technology help pay attention to "Mobile Cloud" service, so there have been being a lot of studies on "Mobile Cloud" service. Especially, the important of 'Recommendation Service' which is customized for each user's preference and context has been increasing. In order to provide appropriate recommendation services, it enables to recognize user's current state, analyze the user's profile like user's tendency and preference, and draw the service answering the user's request. Most existing frameworks, however, are not very suitable for mobile devices because they were proposed on the web-based. And other context information except location information among user's context information are not much considered. Therefore, this paper proposed the context-aware framework, which provides more suitable services by using user's context and profile.

Social Context-aware Recommendation System: a Case Study on MyMovieHistory (소셜 상황 인지를 통한 추천 시스템: MyMovieHistory 사례 연구)

  • Lee, Yong-Seung;Jung, Jason J.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1643-1651
    • /
    • 2014
  • Social networking services (in short, SNS) allow users to share their own data with family, friends, and communities. Since there are many kinds of information that has been uploaded and shared through the SNS, the amount of information on the SNS keeps increasing exponentially. Particularly, Facebook has adopted some interesting features related to entertainment (e.g., movie, music and TV show). However, they do not consider contextual information of users for recommendation (e.g., time, location, and social contexts). Therefore, in this paper, we propose a novel approach for movie recommendation based on the integration of a variety contextual information (i.e., when the users watched the movies, where the users watched the movies, and who watched the movie with them). Thus, we developed a Facebook application (called MyMovieHistory) for recording the movie history of users and recommending relevant movies.

Personalized Exhibition Booth Recommendation Methodology Using Sequential Association Rule (순차 연관 규칙을 이용한 개인화된 전시 부스 추천 방법)

  • Moon, Hyun-Sil;Jung, Min-Kyu;Kim, Jae-Kyeong;Kim, Hyea-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.195-211
    • /
    • 2010
  • An exhibition is defined as market events for specific duration to present exhibitors' main product range to either business or private visitors, and it also plays a key role as effective marketing channels. Especially, as the effect of the opinions of the visitors after the exhibition impacts directly on sales or the image of companies, exhibition organizers must consider various needs of visitors. To meet needs of visitors, ubiquitous technologies have been applied in some exhibitions. However, despite of the development of the ubiquitous technologies, their services cannot always reflect visitors' preferences as they only generate information when visitors request. As a result, they have reached their limit to meet needs of visitors, which consequently might lead them to loss of marketing opportunity. Recommendation systems can be the right type to overcome these limitations. They can recommend the booths to coincide with visitors' preferences, so that they help visitors who are in difficulty for choices in exhibition environment. One of the most successful and widely used technologies for building recommender systems is called Collaborative Filtering. Traditional recommender systems, however, only use neighbors' evaluations or behaviors for a personalized prediction. Therefore, they can not reflect visitors' dynamic preference, and also lack of accuracy in exhibition environment. Although there is much useful information to infer visitors' preference in ubiquitous environment (e.g., visitors' current location, booth visit path, and so on), they use only limited information for recommendation. In this study, we propose a booth recommendation methodology using Sequential Association Rule which considers the sequence of visiting. Recent studies of Sequential Association Rule use the constraints to improve the performance. However, since traditional Sequential Association Rule considers the whole rules to recommendation, they have a scalability problem when they are adapted to a large exhibition scale. To solve this problem, our methodology composes the confidence database before recommendation process. To compose the confidence database, we first search preceding rules which have the frequency above threshold. Next, we compute the confidences of each preceding rules to each booth which is not contained in preceding rules. Therefore, the confidence database has two kinds of information which are preceding rules and their confidence to each booth. In recommendation process, we just generate preceding rules of the target visitors based on the records of the visits, and recommend booths according to the confidence database. Throughout these steps, we expect reduction of time spent on recommendation process. To evaluate proposed methodology, we use real booth visit records which are collected by RFID technology in IT exhibition. Booth visit records also contain the visit sequence of each visitor. We compare the performance of proposed methodology with traditional Collaborative Filtering system. As a result, our proposed methodology generally shows higher performance than traditional Collaborative Filtering. We can also see some features of it in experimental results. First, it shows the highest performance at one booth recommendation. It detects preceding rules with some portions of visitors. Therefore, if there is a visitor who moved with very a different pattern compared to the whole visitors, it cannot give a correct recommendation for him/her even though we increase the number of recommendation. Trained by the whole visitors, it cannot correctly give recommendation to visitors who have a unique path. Second, the performance of general recommendation systems increase as time expands. However, our methodology shows higher performance with limited information like one or two time periods. Therefore, not only can it recommend even if there is not much information of the target visitors' booth visit records, but also it uses only small amount of information in recommendation process. We expect that it can give real?time recommendations in exhibition environment. Overall, our methodology shows higher performance ability than traditional Collaborative Filtering systems, we expect it could be applied in booth recommendation system to satisfy visitors in exhibition environment.

Personalized Service Based on Context Awareness through User Emotional Perception in Mobile Environment (모바일 환경에서의 상황인식 기반 사용자 감성인지를 통한 개인화 서비스)

  • Kwon, Il-Kyoung;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.287-292
    • /
    • 2012
  • In this paper, user personalized services through the emotion perception required to support location-based sensing data preprocessing techniques and emotion data preprocessing techniques is studied for user's emotion data building and preprocessing in V-A emotion model. For this purpose the granular context tree and string matching based emotion pattern matching techniques are used. In addition, context-aware and personalized recommendation services technique using probabilistic reasoning is studied for personalized services based on context awareness.