• Title/Summary/Keyword: Location-based recommendation

Search Result 129, Processing Time 0.027 seconds

Development of Mobile Context Awareness Restaurant Recommendation Services (모바일 상황인식 추천맛집 서비스 개발)

  • Ryu, Jong-Min;Hong, Chang-Pyo;Kang, Kyung-Bo;Kang, Dong-Hyun;Yang, Doo-Yeong;Jwa, Jeong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.5
    • /
    • pp.138-145
    • /
    • 2007
  • Mobile network evolution and development of USN technologies introduce new business model based on context awareness. Cellular operators provide friend finding service using cell based location information and telematics service using GPS location information. Recently cellular operators provide yellow page service based cell based location information. In this paper, we develop mobile tour application on WIPI platform based on location information. Mobile tour information services provide the best information based on context awareness using user location information from LBS(Location Based Service) Platform, season, weather conditions, time from Web server, and personal preference information stored in database. Mobile tour information service application is developed on WIPI platform.

Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments (스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템)

  • Lee, Dongwoo;Kim, Ungsoo;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.35-48
    • /
    • 2017
  • There are many and various devices like sensors, displays, smart phone, etc. in smart environment. And contents can be provided by using these devices. Vast amounts of contents are provided to users, but in most environments, there are no regard for user or some simple elements like location and time are regarded. So there's a limit to provide meaningful contents to users. In this paper, I suggest the contents recommendation system that can recommend contents to users by reasoning context of users, devices and contents. The contents recommendation system suggested in this paper recommend the contents by calculating the user preferences using the situation reasoned with the contextual data acquired from various devices and the user profile received from the user directly. To organize this process, the method on how to model ontology with domain knowledge and how to design and develop the contents recommendation system are discussed in this paper. And an application of the contents recommendation system in Centum City, Busan is introduced. Then, the evaluation methods how the contents recommendation system is evaluated are explained. The evaluation result shows that the mean absolute error is 0.8730, which shows the excellent performance of the proposed contents recommendation system.

Estimating People's Position Using Matrix Decomposition

  • Dao, Thi-Nga;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.39-46
    • /
    • 2019
  • Human mobility estimation plays a key factor in a lot of promising applications including location-based recommendation systems, urban planning, and disease outbreak control. We study the human mobility estimation problem in the case where recent locations of a person-of-interest are unknown. Since matrix decomposition is used to perform latent semantic analysis of multi-dimensional data, we propose a human location estimation algorithm based on matrix factorization to reconstruct the human movement patterns through the use of information of persons with correlated movements. Specifically, the optimization problem which minimizes the difference between the reconstructed and actual movement data is first formulated. Then, the gradient descent algorithm is applied to adjust parameters which contribute to reconstructed mobility data. The experiment results show that the proposed framework can be used for the prediction of human location and achieves higher predictive accuracy than a baseline model.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Consumers' Willingness to Provide Information and Cooperation Intention in the Use of Mobile Product Recommendation Services for Fashion Stores (패션점포 내 모바일 제품추천 서비스에 대한 소비자의 정보제공의도와 협력의도)

  • Lee, Hyun-Hwa;Moon, Heekang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1139-1154
    • /
    • 2013
  • This study examined the effects of consumers' usefulness and the hedonic perception of their willingness to provide information and cooperation intention in the use of location-context based mobile product recommendation services for fashion stores. We examined the influence of consumers' beliefs regarding marketer's information practices on their perceptions of provided services. In addition, the moderating effects of consumers' epistemic curiosity and information control level were investigated. A total of 400 smartphone users were included as participants for the present study. The results showed that consumers who perceived information services as more hedonic and useful are more likely to provide personal information and cooperate with marketers. The findings of the study suggest that fashion retailers who plan to introduce mobile product recommendation services should pay attention to the hedonic aspects of the services. In addition, the effects of usefulness and hedonic perception of the two dependent variables were different according to the level of epistemic curiosity and information control.

Development of a Targeted Recommendation Model for Earthquake Risk Prevention in the Whole Disaster Chain

  • Su, Xiaohui;Ming, Keyu;Zhang, Xiaodong;Liu, Junming;Lei, Da
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.14-27
    • /
    • 2021
  • Strong earthquakes have caused substantial losses in recent years, and earthquake risk prevention has aroused a significant amount of attention. Earthquake risk prevention products can help improve the self and mutual-rescue abilities of people, and can create convenient conditions for earthquake relief and reconstruction work. At present, it is difficult for earthquake risk prevention information systems to meet the information requirements of multiple scenarios, as they are highly specialized. Aiming at mitigating this shortcoming, this study investigates and analyzes four user roles (government users, public users, social force users, insurance market users), and summarizes their requirements for earthquake risk prevention products in the whole disaster chain, which comprises three scenarios (pre-quake preparedness, in-quake warning, and post-quake relief). A targeted recommendation rule base is then constructed based on the case analysis method. Considering the user's location, the earthquake magnitude, and the time that has passed since the earthquake occurred, a targeted recommendation model is built. Finally, an Android APP is implemented to realize the developed model. The APP can recommend multi-form earthquake risk prevention products to users according to their requirements under the three scenarios. Taking the 2019 Lushan earthquake as an example, the APP exhibits that the model can transfer real-time information to everyone to reduce the damage caused by an earthquake.

Leveraging Social Media for Enriching Disaster related Location Trustiness (재난 관련 위치 신뢰도 향상을 위한 소셜 미디어 활용)

  • Nguyen, Van-Quyet;Nguyen, Giang-Truong;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.567-575
    • /
    • 2017
  • Location-based services play an important role in many applications such as disaster warning systems and recommendation systems. These applications often require not only location information (e.g., name, latitude, longitude, etc.) but also the impact of events (e.g., earthquake, typhoon, etc.) on locations. Recently, to provide the impact of an event on a location, how to calculate location trustiness by using multimodal information such as earthquake information and disaster sensor data is researched. In the previous approach, the linear decrement of impact value of an event is applied to obtain the location trustiness of a specific location. In this paper, we propose a new approach to enrich location trustiness, that is, the impact of an event on a location, by using social media information additionally. Firstly, we design a collecting system for earthquake information and social media data. Secondly, we present an approach of location trustiness calculation based on earthquake information. Finally, we propose a new approach to enrich location trustiness by augmenting the trustiness in spatially distributed manner based on social media.

A Design of User-Based Voluntary Service Recommendation Program Using Mobile Push Services for Health Care

  • Kim, Tae-Jung;Han, Sang-Hoon;Weon, Sunghyun;Huh, Jun-Ho
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.721-724
    • /
    • 2017
  • Designing the User-Based Voluntary Service Recommendation Program proposed in this study was motivated by the fact that it is not easy for volunteers to find a place for their services. Even though there are many volunteer centers or organizations, volunteers often experience difficulty in where and how they should apply for their work as those places are not well promoted. Thus, this program has been designed by applying the mobile push services along with location technology. The authors plan to introduce the program to the public as an open source by implementing the program with both Android and Python - hoping that the program will be useful to the users and volunteer organizations.

Proposal of Personalized Recommendation for Korean Food and Tour Using Beacon System (비콘을 활용한 개인 맞춤형 한식과 관광지 추천 관리 시스템 제안)

  • Sung, Kihyuk;Ryu, Gihwan;Yun, Daiyeol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • Beacon is a wireless communication device that can automatically recognize the smart device in the short distance and transmit the necessary data, Beacon is a representative Internet of Things (IoT) facility in the era of the 4th Industrial Revolution, which is utilized in various fields such as short-distance information delivery, mobile location service, shopping, and marketing, and is constantly evolving. In this paper, it is based on tourist site-based recommendation information service. A system is proposed that recommends customized information according to the user's interest, preference, etc. by incorporating beacon technology. In other words, it acts as an information agent that informs tourists of desired information. In order to meet the needs of tourists, it is necessary to build an intelligent tourism recommendation system. The personalized Korean food and tourism recommendation management system using the beacon technology proposed in this paper is expected to provide high-quality services not only to foreigners visiting Korea but also to Korean tourists.

Study on Location-Specific Live Load Model for Verification of Bridge Reliability Based on Probabilistic Approach (교량의 신뢰성 검증을 위한 지역적 활하중 확률모형 구축)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 2016
  • Purpose: Majority of bridges and roads in Gangwon Province have been carrying loads associated with heavy materials such as rocks, mining products, and cement. This location-specific live loads have contributed to the present situation of overloading, compared to other provinces in Korea. However, the bridges in Gangwon province are designed by national bridge design specification, without considering the location-specific live load characteristics. Therefore, this study focuses on the real traffic data accumulated on regional weighing station to verify the live load characteristics, including actual live load gross vehicle weight, axle weight axle spacings, and number of trucks. Methods: In order to take into account the location specific live load, a governmental weigh station (38th national highway Miro) have been selected and the passing truck data are processed. Based on the truck survey, trucks are categorized into 3 different shapes, and each shape has been idealized into normal distribution. Then, the resulting survey data are processed to predict the target maximum live load values, including the axle loads and gross vehicle weights in 75 years service life span. Results: The results are compared to the nationally used DB-24 live loads, and the results show that nationally recognized DB-24 live load does not sufficiently represent real traffic in mountaineous region in Gangwon province. Conclusion: The comparison results in the recommendation of location-specific live load that should be taken into account for bridge design and evaluation.