• Title/Summary/Keyword: Location정보

Search Result 5,606, Processing Time 0.044 seconds

Evaluation of the Contribution of Inflow by Water Sources into Hydropower Dam in the Han River basin through Water Balance Analysis (물수지 분석을 통한 한강유역 발전용댐 유입량의 수원별 기여도 평가)

  • Choi, Sijung;Kang, Seongkyu;Noh, Huiseong;Ahn, Jeonghwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.649-661
    • /
    • 2024
  • Recently, the need for water supply from hydropower dams has been increasing due to drought. In order to supply water through hydropower dam, the inflow into hydropower dam should be evaluated first. Some of the hydropower dams in the Han River basin are located downstream of multipurpose dam, so it is important to analyze its own inflow of the hydropower dam. The purpose of this study is to evaluate the contribution of inflow by water source to the hydropower dam located in the Han River basin. Water use-related data provided by various domestic institutions were investigated and collected, and a location-based water supply and demand network was constructed. Unlike the existing domestic water balance analysis method, the simulation was conducted in consideration of the amount of transmission loss. The applicability of the analysis method was confirmed through the results of the fitness evaluation (NSE 0.95~0.99 and correlation coefficient 0.98~0.99) comparing the simulated flow with the observed flow at the representative point. Based on the water intake method of the facility and the release method of the remaining multipurpose dam water, a water balance analysis was performed assuming four cases, and the contribution of inflow by water sources into each hydropower dam was evaluated and presented. The research results are expected to provide various information for evaluating the water supply capacity of hydropower dams in the future.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users (사용자 간 신뢰관계 네트워크 분석을 활용한 협업 필터링 알고리즘의 예측 정확도 개선)

  • Choi, Seulbi;Kwahk, Kee-Young;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.113-127
    • /
    • 2016
  • Among the techniques for recommendation, collaborative filtering (CF) is commonly recognized to be the most effective for implementing recommender systems. Until now, CF has been popularly studied and adopted in both academic and real-world applications. The basic idea of CF is to create recommendation results by finding correlations between users of a recommendation system. CF system compares users based on how similar they are, and recommend products to users by using other like-minded people's results of evaluation for each product. Thus, it is very important to compute evaluation similarities among users in CF because the recommendation quality depends on it. Typical CF uses user's explicit numeric ratings of items (i.e. quantitative information) when computing the similarities among users in CF. In other words, user's numeric ratings have been a sole source of user preference information in traditional CF. However, user ratings are unable to fully reflect user's actual preferences from time to time. According to several studies, users may more actively accommodate recommendation of reliable others when purchasing goods. Thus, trust relationship can be regarded as the informative source for identifying user's preference with accuracy. Under this background, we propose a new hybrid recommender system that fuses CF and social network analysis (SNA). The proposed system adopts the recommendation algorithm that additionally reflect the result analyzed by SNA. In detail, our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and trust relationship information between users when calculating user similarities. For this, our system creates and uses not only user-item rating matrix, but also user-to-user trust network. As the methods for calculating user similarity between users, we proposed two alternatives - one is algorithm calculating the degree of similarity between users by utilizing in-degree and out-degree centrality, which are the indices representing the central location in the social network. We named these approaches as 'Trust CF - All' and 'Trust CF - Conditional'. The other alternative is the algorithm reflecting a neighbor's score higher when a target user trusts the neighbor directly or indirectly. The direct or indirect trust relationship can be identified by searching trust network of users. In this study, we call this approach 'Trust CF - Search'. To validate the applicability of the proposed system, we used experimental data provided by LibRec that crawled from the entire FilmTrust website. It consists of ratings of movies and trust relationship network indicating who to trust between users. The experimental system was implemented using Microsoft Visual Basic for Applications (VBA) and UCINET 6. To examine the effectiveness of the proposed system, we compared the performance of our proposed method with one of conventional CF system. The performances of recommender system were evaluated by using average MAE (mean absolute error). The analysis results confirmed that in case of applying without conditions the in-degree centrality index of trusted network of users(i.e. Trust CF - All), the accuracy (MAE = 0.565134) was lower than conventional CF (MAE = 0.564966). And, in case of applying the in-degree centrality index only to the users with the out-degree centrality above a certain threshold value(i.e. Trust CF - Conditional), the proposed system improved the accuracy a little (MAE = 0.564909) compared to traditional CF. However, the algorithm searching based on the trusted network of users (i.e. Trust CF - Search) was found to show the best performance (MAE = 0.564846). And the result from paired samples t-test presented that Trust CF - Search outperformed conventional CF with 10% statistical significance level. Our study sheds a light on the application of user's trust relationship network information for facilitating electronic commerce by recommending proper items to users.

The Tendency of the Written Test Questions for the History of Korean Landscape Architecture in National Qualification Test of a Landscape Engineer (조경기사 필기시험 중 한국조경사 문제의 출제 경향)

  • So, Hyun-Su;Lim, Eui-Je
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.89-102
    • /
    • 2015
  • This study contemplates the tendency of the examination questions for History of Korean Landscape Architecture. The study targets the questions of 'Landscape Architecture History' which has been set in the written test for National Qualification Test of a landscape engineer for recent 10 years from 2005 to 2014 and derives analyzable items based on the guidelines of question-setting presented by Human Resources Development Service of Korea. The results of the study are drawn as follows. First, among 5 areas composing Landscape History, the proportion of Korean Landscape questions is getting increased while that of Western ones is decreasing. Second, about 30 traditional trees and 11 types of traditional landscape elements including traditional facilities were shown in Korean Landscape questions. Besides, history, geographic, practical science, horticulture, anthology books and the 25 tradition landscape-related historic documents categorized as the garden painting data were found. And the kings from ancient era to Choseon Dynasty who were associated with the time of palace garden building, the builders or owners of the villas, the authors of the document and Chinese scholars also appeared. Third, there were no the questions of prehistoric times and Balhae Kingdom, whereas those of Choseon Dynasty were dominantly focused. Among the traditional sites of Choseon Dynasty, Byeolseo(villas) were set most, followed by Dosung or Gung-gweol(castle towns or palaces), houses, Nu Jeong Dea(pavilions) and Seowon(local schools) in order. Nak-an eupseong and Yong-ju sa were the only cases for a castle town and a temple each. Fourth, being associated with tradition spaces, the questions asked for understanding the detailed contents of time of sites' construction, builders, location features, building structures, ground plan types and the components s of garden. In addition, as a result of checking whether traditional landscape sites were shown in the set questions in 9 Korean Landscape textbooks, Dongchundang, Pungamjeonsa, Simgogseowon did not appeared. As a result of reviewing the tendency of the examination questions for History of Korean Landscape Architecture, the questions which ask minor facts without generality and which include difficult information and site uncomprehended in the textbook should be reconsidered.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

The Relationship Analysis between the Epicenter and Lineaments in the Odaesan Area using Satellite Images and Shaded Relief Maps (위성영상과 음영기복도를 이용한 오대산 지역 진앙의 위치와 선구조선의 관계 분석)

  • CHA, Sung-Eun;CHI, Kwang-Hoon;JO, Hyun-Woo;KIM, Eun-Ji;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.61-74
    • /
    • 2016
  • The purpose of this paper is to analyze the relationship between the location of the epicenter of a medium-sized earthquake(magnitude 4.8) that occurred on January 20, 2007 in the Odaesan area with lineament features using a shaded relief map(1/25,000 scale) and satellite images from LANDSAT-8 and KOMPSAT-2. Previous studies have analyzed lineament features in tectonic settings primarily by examining two-dimensional satellite images and shaded relief maps. These methods, however, limit the application of the visual interpretation of relief features long considered as the major component of lineament extraction. To overcome some existing limitations of two-dimensional images, this study examined three-dimensional images, produced from a Digital Elevation Model and drainage network map, for lineament extraction. This approach reduces mapping errors introduced by visual interpretation. In addition, spline interpolation was conducted to produce density maps of lineament frequency, intersection, and length required to estimate the density of lineament at the epicenter of the earthquake. An algorithm was developed to compute the Value of the Relative Density(VRD) representing the relative density of lineament from the map. The VRD is the lineament density of each map grid divided by the maximum density value from the map. As such, it is a quantified value that indicates the concentration level of the lineament density across the area impacted by the earthquake. Using this algorithm, the VRD calculated at the earthquake epicenter using the lineament's frequency, intersection, and length density maps ranged from approximately 0.60(min) to 0.90(max). However, because there were differences in mapped images such as those for solar altitude and azimuth, the mean of VRD was used rather than those categorized by the images. The results show that the average frequency of VRD was approximately 0.85, which was 21% higher than the intersection and length of VRD, demonstrating the close relationship that exists between lineament and the epicenter. Therefore, it is concluded that the density map analysis described in this study, based on lineament extraction, is valid and can be used as a primary data analysis tool for earthquake research in the future.

An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority (우선순위 기반의 상황충돌 해석 조명제어시스템 구현)

  • Seo, Won-Il;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.23-33
    • /
    • 2016
  • The current smart lighting is shaped to offer the lighting environment suitable for current context, after identifying user's action and location through a sensor. The sensor-based context awareness technology just considers a single user, and the studies to interpret many users' various context occurrences and conflicts lack. In existing studies, a fuzzy theory and algorithm including ReBa have been used as the methodology to solve context conflict. The fuzzy theory and algorithm including ReBa just avoid an opportunity of context conflict that may occur by providing services by each area, after the spaces where users are located are classified into many areas. Therefore, they actually cannot be regarded as customized service type that can offer personal preference-based context conflict. This paper proposes a priority-based LED lighting control system interpreting multiple context conflicts, which decides services, based on the granted priority according to context type, when service conflict is faced with, due to simultaneous occurrence of various contexts to many users. This study classifies the residential environment into such five areas as living room, 'bed room, study room, kitchen and bath room, and the contexts that may occur within each area are defined as 20 contexts such as exercising, doing makeup, reading, dining and entering, targeting several users. The proposed system defines various contexts of users using an ontology-based model and gives service of user oriented lighting environment through rule based on standard and context reasoning engine. To solve the issue of various context conflicts among users in the same space and at the same time point, the context in which user concentration is required is set in the highest priority. Also, visual comfort is offered as the best alternative priority in the case of the same priority. In this manner, they are utilized as the criteria for service selection upon conflict occurrence.

The Survey and Study of Nujeong(樓亭) on the Han River(漢江) - Yeon-gang-jeong-sa-gi(沿江亭榭記) written by Eom Gyeong-su(嚴慶遂) - (18세기 한강(漢江)의 누정(樓亭) 조사 연구 - 엄경수(嚴慶遂)의 「연강정사기(沿江亭榭記)」를 중심으로 -)

  • Ahn, Dae-Hoe;Park, Jin-Wook;Kim, Se-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.76-93
    • /
    • 2017
  • This thesis recapitulates the current status of Nujeongs(樓亭) by the Han River(漢江) from the late Joseon dynasty, and to contemplate the possible options regarding their restoration. The book Yeon-gang-jeong-sa-gi(沿江亭?記) written by Eom Gyeong-su(嚴慶遂) in 1716 was selected as an object of study. After Hanyang was selected to be the capital of Joseon, Han River was considered to be the greatest venue to visit to take some time off and enjoy the view. The nobleman of the Joseon dynasty built Nujeongs around the riverside and enjoyed boating inthe current status of Nujeongs(樓亭) Han River. Eom Gyeong-su, after traveling on a boat to personally collect information, combined such information with preexisting information to create a well-organized and thorough list of the 29 Nujeongs built by the riverbank, which can be found in his book Yeon-gang-jeong-sa-gi. It is probable that a closer look into Yeon-gang-jeong-sa-gi will reveal more information regarding the general atmosphere of the era, which focused on the history and culture of Han River, and will also enable a more thorough research involving the Han River Nujeongs. The Nujeongs listed in Yeon-gang-jeong-sa-gi were analyzed in this paper. Based on the explanations found in Yeon-gang-jeong-sa-gi, the locations of the 29 Nujeongs were checked and reconfirmed, and the origins and the meanings behind their names were analyzed. In addition, the history of the Nujeongs were recapitulated with information gained from the basis of the fact that Yeon-gang-jeong-sa-gi was written in 1716, The origin of each Nujeongs were revisited, and the history of their change and demise were analyzed. Lastly, the sceneries around each Nujeongs were analyzed based on the poetries that were written and read in the respective Nujeongs, and the general taste for the arts in the era was analyzed. Some Nujeongs remain in the form of paintings, enabling us to take a closer look at the institutions and other aspects of the era. The analysis of Yeon-gang-jeong-sa-gi by this paper has revealed the location of some Han River Nujeongs that were unknown previously. Also, the revelation of some history regarding certain Nujeongs that were unknown previously has created an opportunity for the reinterpretation of the spaces surrounding Han River, and also the opportunity for a new story. Han River has lost most of its old self due to repeated exploitation. However, there are some areas where traces of the original form remains and that may be restored, and some areas may be relocated and restored based on existing paintings. Yeon-gang-jeong-sa-gi in particular may provide us with numerous possible options to reinvigorate and restructure the riverside with a more modern interpretation, especially in relation to the Han River cruise ship, as it is a book written after traveling Han River on a boat.