• Title/Summary/Keyword: Localization technology

Search Result 1,005, Processing Time 0.021 seconds

SENSITIVITY OF SHEAR LOCALIZATION ON PRE-LOCALIZATION DEFORMATION MODE

  • Kim, Kwon--Hee-
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.83-102
    • /
    • 1992
  • As shear localization is observed in different deformation modes, an attempt is made to understand the conditions for shear localization in general deformation modes. Most emphasis in put upon the effects of pre-localization deformation mode on the onset of shear localization and all the other well-recognized effects of subtle constitutive features and imperfection sensitivity studied elsewhere are not investigated here. Rather, an approximate perturbation stability analysis is performed for simplified isotropic rigid-plastic solids subjected to general mode of homogeneous deformation. Shear localization is possible in any deformation mode if the material has strain softening. The incipient rate of shear localization and shear plane orientations are strongly dependent upon the pre-localization deformation mode. Significant strain softening is necessary for shear localization in homogeneous axisymmetric deformation modes while infinitesimal strain softening is necessary for shear localization in plane strain deformation mode. In any deformation mode, there are more than one shear plane orientation. Except for homogeneous axisymmetric deformation modes, there are two possible shear plane orientations with respect to the principal directions of stretching. Some well-known examples are discussed in the light of the current analysis.

  • PDF

Adaptive Parameter Estimation Method for Wireless Localization Using RSSI Measurements

  • Cho, Hyun-Hun;Lee, Rak-Hee;Park, Joon-Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.883-887
    • /
    • 2011
  • Location-based service (LBS) is becoming an important part of the information technology (IT) business. Localization is a core technology for LBS because LBS is based on the position of each device or user. In case of outdoor, GPS - which is used to determine the position of a moving user - is the dominant technology. As satellite signal cannot reach indoor, GPS cannot be used in indoor environment. Therefore, research and study about indoor localization technology, which has the same accuracy as an outdoor GPS, is needed for "seamless LBS". For indoor localization, we consider the IEEE802.11 WLAN environment. Generally, received signal strength indicator (RSSI) is used to obtain a specific position of the user under the WLAN environment. RSSI has a characteristic that is decreased over distance. To use RSSI at indoor localization, a mathematical model of RSSI, which reflects its characteristic, is used. However, this RSSI of the mathematical model is different from a real RSSI, which, in reality, has a sensitive parameter that is much affected by the propagation environment. This difference causes the occurrence of localization error. Thus, it is necessary to set a proper RSSI model in order to obtain an accurate localization result. We propose a method in which the parameters of the propagation environment are determined using only RSSI measurements obtained during localization.

A Sonar-based Position Estimation Algorithm for Localization of Mobile Robots (초음파 센서를 이용한 이동로봇의 자기위치 파악 알고리즘)

  • Joe, Woong-Yeol;Oh, Sang-Rok;Yu, Bum-Jae;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.159-162
    • /
    • 2002
  • This paper presents a modified localization scheme of a mobile robot. When it navigates, the position error of a robot is increased and doesn't go to a goal point where the robot intends to go at the beginning. The objective of localization is to estimate the position of a robot precisely. Many algorithms were developed and still are being researched for localization of a mobile robot at present. Among them, a localization algorithm named continuous localization proposed by Schultz has some merits on real-time navigation and is easy to be implemented compared to other localization schemes. Continuous Localization (CL) is based on map-matching algorithm with global and local maps using only ultrasonic sensors for making grid maps. However, CL has some problems in the process of searching the best-scored-map, when it is applied to a mobile robot. We here propose fast and powerful map-matching algorithm for localization of a mobile robot by experiments.

  • PDF

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

Indoor Mobile Localization System and Stabilization of Localization Performance using Pre-filtering

  • Ko, Sang-Il;Choi, Jong-Suk;Kim, Byoung-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.204-213
    • /
    • 2008
  • In this paper, we present the practical application of an Unscented Kalman Filter (UKF) for an Indoor Mobile Localization System using ultrasonic sensors. It is true that many kinds of localization techniques have been researched for several years in order to contribute to the realization of a ubiquitous system; particularly, such a ubiquitous system needs a high degree of accuracy to be practical and efficient. Unfortunately, a number of localization systems for indoor space do not have sufficient accuracy to establish any special task such as precise position control of a moving target even though they require comparatively high developmental cost. Therefore, we developed an Indoor Mobile Localization System having high localization performance; specifically, the Unscented Kalman Filter is applied for improving the localization accuracy. In addition, we also present the additive filter named 'Pre-filtering' to compensate the performance of the estimation algorithm. Pre-filtering has been developed to overcome negative effects from unexpected external noise so that localization through the Unscented Kalman Filter has come to be stable. Moreover, we tried to demonstrate the performance comparison of the Unscented Kalman Filter and another estimation algorithm, such as the Unscented Particle Filter (UPF), through simulation for our system.

A Study on The Mass Production Weapon System Parts Localization System Engineering Development Management Process Application based on ISO/IEC/IEEE 15288 (ISO/IEC/IEEE 15288 기반 양산단계 무기체계 부품국산화 체계공학 개발관리 절차 적용 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun;Cho, Yu-Seup;Sung, In-Chul;Han, Dong-Seog
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.541-552
    • /
    • 2016
  • Purpose: In this study, we propose that how to approach a effective system engineering and optimize system engineering management process for the mass production weapon system parts localization development process and success in DTaQ. Methods: To approach a effective system engineering for the mass production weapon system parts localization, we analyze a weapon system acquisition process and system engineering process of Republic of Korea and DTaQ parts localization business regulations in advance. after results of analysis of them, we implement a optimized parts localization development system engineering based on ISO/IEC/IEEE 15288. Results: In order to apply International Standard ISO/IEC/IEEE 15288 to the mass production weapon system parts localization development process, we compare the mass production weapon system parts localization acquisition environment with ISO/IEC/IEEE 15288 and analyze them. therefore, It is possible to implement a part of concept stage and development stage of ISO/IEC/IEEE total life cycle stage for the mass production weapon system parts localization development process. To achieve the technical review milestones of DTaQ parts localization business regulations in the selected stages of ISO/IEC/IEEE, the development and management agency perform 2 high rank process and 19 low rank process specified in ISO/IEC/IEEE. Conclusion: When the development and management agency perform the mass production weapon system parts localization development using the proposed system engineering approach, they should easily meet milestone through the clarified requirement and simplified System Engineering output documents in limited development period.

Identification of multiple sources in a plate structure using pre-filtering process for reduction of interference wave

  • Lee, S.K.;Moon, Y.S.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.219-237
    • /
    • 2011
  • This paper presents novel research into the source localization of multiple impacts. Source localization technology for single impact loads in a plate structure has been used for health monitoring. Most of research on source localization has been focused only on the localization of single impacts. Overlapping of dispersive waves induced by multiple impacts and reflection of those waves from the edge of the plate make it difficult to localize the sources of multiple impacts using traditional source localization technology. The method solving the overlapping problem and the reflection problem is presented in the paper. The suggested method is based on pre-signal processing technology using band pass filter and optimal filter. Results from numerical simulation and from experimentation are presented, and these verify the capability of the proposed method.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

Non-cooperative interference radio localization with binary proximity sensors

  • Wu, Qihui;Yue, Liang;Wang, Long;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3432-3448
    • /
    • 2015
  • Interference can cause serious problems in our daily life. Traditional ways in localizing a target can't work well when it comes to the source of interference for it may take an uncooperative or even resistant attitude towards localization. To tackle this issue, we take the BPSN (Binary Proximity Sensor Networks) and consider a passive way in this paper. No cooperation is needed and it is based on simple sensor node suitable for large-scale deployment. By dividing the sensing field into different patches, when enough patches are formed, good localization accuracy can be achieved with high resolution. Then we analyze the relationship between sensing radius and localization error, we find that in a finite region where edge effect can't be ignored, the trend between sensing radius and localization error is not always consistent. Through theoretical analysis and simulation, we explore to determine the best sensing radius to achieve high localization accuracy.

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.