• Title/Summary/Keyword: Localization and design

Search Result 308, Processing Time 0.026 seconds

Observation Likelihood Function Design and Slippage Error Compensation Scheme for Indoor Mobile Robots (실내용 이동로봇을 위한 위치추정 관측모델 설계 및 미끄러짐 오차 보상 기법 개발)

  • Moon, Chang-Bae;Kim, Kyoung-Rok;Song, Jae-Bok;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1092-1098
    • /
    • 2007
  • A mobile robot localization problem can be classified into following three sub-problems as an observation likelihood model, a motion model and a filtering technique. So far, we have developed the range sensor based, integrated localization scheme, which can be used in human-coexisting real environment such as a science museum and office buildings. From those experiences, we found out that there are several significant issues to be solved. In this paper, we focus on three key issues, and then illustrate our solutions to the presented problems. Three issues are listed as follows: (1) Investigation of design requirements of a desirable observation likelihood model, and performance analysis of our design (2) Performance evaluation of the localization result by computing the matching error (3) The semi-global localization scheme to deal with localization failure due to abrupt wheel slippage In this paper, we show the significance of each concept, developed solutions and the experimental results. Experiments were carried out in a typical modern building environment, and the results clearly show that the proposed solutions are useful to develop practical and integrated localization schemes.

Autonomous Ground Vehicle Localization Filter Design Using Landmarks with Non-Unique Features (비고유 특징을 갖는 의미정보를 이용한 지상 자율이동체 측위 기법)

  • Kim, Chan-Yeong;Hong, Daniel;Ra, Won-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1486-1495
    • /
    • 2018
  • This paper investigates the autonomous ground vehicle (AGV) localization filter design problem under GNSS-denied environments. It is assumed that the given landmarks do not have unique features due to the lack of a prior knowledge on them. For such case, the AGV may have difficulties in distinguishing the position measurement of the detected landmark from those of other landmarks with the same feature, hence the conventional localization filters are not applicable. To resolve this technical issue, the localization filter design problem is formulated as a special form of the data association determining whether the detected feature is actually originated from which landmark. The measurement hypotheses generated by landmarks with the same feature are evaluated by the nearest neighbor data association scheme to reduce the computational burden. The position measurement corresponding to the landmark with the most probable hypothesis is used for localization filter. Through the experiments in real-driving condition, it is shown that the proposed method provides satisfactory localization performance in spite of using non-unique landmarks.

A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design (캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구)

  • Lee, Dong Myung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.840-845
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure. For the mathematical convenience, the MEMS resonator is first modeled as a multi pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

  • PDF

Design of MEMS Resonator Array for Minimization of Mode Localization Factor Subject to Random Fabrication Error (랜덤 제조 오차를 고려한 모드 편재계수를 최소화하는 반복 배열 마이크로 공진기의 최적설계)

  • Kim, Wook-Tae;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.931-938
    • /
    • 2005
  • This paper presents a robust optimal design method for a periodic structure type of MEMS resonator that is vulnerable to mode localization. The robust configuration of such a MEMS resonator to fabrication error is implemented by changing the regularity of periodic structure For the mathematical convenience, the MEMS resonator is first modeled as a multi-pendulum system. The index representing the measure of mode variation is then introduced using the perturbation method and the concept of modal assurance criterion. Finally, the optimal intentional mistuning, minimizing the expectation of the irregularity measure for each substructure, is determined for the normal distributed fabrication error and its robustness in the design of MEMS resonator to the fabrication error is demonstrated with numerical examples.

Adaptive location of repaired blade for multi-axis milling

  • Wu, Baohai;Wang, Jian;Zhang, Ying;Luo, Ming
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • Free-form blades are widely used in different industries, such as aero-engine and steam turbine. Blades that are damaged during service or have production deficiencies are usually replaced with new ones. This leads to the waste of expensive material and is not sustainable. However, material and costs can be saved by repairing of locally damaged blades or blades with localized production deficiencies. The blade needs to be further machined after welding process to reach the aerodynamic performance requirements. This paper outlines an adaptive location approach of repaired blade for model reconstruction and NC machining. Firstly, a mathematical model is established to describe the localization problem under constraints. Secondly, by solving the mathematical model, localization of repaired blade for NC machining can be obtained. Furthermore, a more flexible method based on the proposed mathematical model and the continuity of the deformation process is developed to realize a better localization. Thirdly, by rebuilding the model of the repaired blade and extracting repair error, optimized tool paths for NC machining is generated adaptively for each individual part. Finally, three examples are given to validate the proposed method.

Efficient Quantizer Design Algorithm for Sequence-Based Localization (SBL) Systems (시퀀스 기반 위치추정 시스템을 위한 효율적인 양자기 설계 알고리즘)

  • Park, Hyun Hong;Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • In this paper, we consider an efficient design of quantizers at sensor nodes for sequence-based localization (SBL) systems which recently show a competitive performance for in-door positioning, Since SBL systems locate targets by partitioning the sensor field into subregions, each with an unique sequence number, we use the distance samples between sensors and the sequences for quantizer design in order to propose a low weight design process. Furthermore, we present a new cost function devised to assign the number of samples and the number of unique sequences uniformly into each of quantization partitions and design quantizers by searching the quantization partitions and codewords that minimize the cost function. We finally conduct experiments to demonstrate that the proposed algorithm offers an outstanding localization performance over typical designs while maintaining a substantial reduction of design complexity.

Wireless Localization Technology Survey and Analysis (무선 측위 기술 조사 및 분석)

  • Kim, Chong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.72-78
    • /
    • 2011
  • Localization information of an object can be a very useful element for many application areas. Presently, GPS is typically used for it, but many researches on the wireless localization technology are going on recently actively using mobile communication network, wireless sensor network, and ad hoc network in order to overcome the limitations of the GPS such as indoor, cost, power consumption, and etc. Therefore, this article surveys the most representative wireless localization techniques, which can be deployed in the wireless networks, and their principles and performances are analyzed based on the researched papers. In a conclusion, selection of a localization technique should consider the key design elements to a given application from the design elements such as localization environment, accuracy, time to fix, computation amount, implementation ease, and etc.

Development of the Bedside Neurocognitive Function Localization Test(BNLT) I : A Design (간이 신경 인지기능 국재화 검사의 개발 I : 고안)

  • Lee, Young-Ho;Jung, Hyo-Kyung;Hoe, Si-Young;Koh, Young-Taek;Park, Byung-Kwan
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 1999
  • Recently, with increasing the number of patients with head injury and cerebrovascular accident, there has been an increasing need for the useful assessment tools of brain dysfunction and it's localization. With the advances in the neuroscience since the mid-1970s, particularly in the areas of neuroanatomical tracing, neuroimaging, and improved behavioraltest design, it has been possible to develop a more precise understanding and localization of brain dysfunction. However, these equipments are not readily available in the private clinics and too expensive to use as a screening tool to all suspected patients with brain dysfunction. Although several screening tests such as Mini-Mental States Examination(MMSE) or Brief Cognitive Rating Scale(BCRS) are simple in use and useful for the brief assessment of brain dysfunction, these are also limited in using for localization of brain dysfunction because of their simplicity. With increasing need of the assessment tool which is able to localize the dysfunction more precisely in the clinical practice, we planned to develop the new assessment tool, the Bedside Neurocognitive Function Localization Test(BNLT) which is suitable for this purpose. The BNLT was designed to be utilized for localizing brain dysfunction effectively and readily in the clinical practice. We introduced the whole process of designing the BNLT in this manuscript.

  • PDF