• Title/Summary/Keyword: Localization algorithm

Search Result 808, Processing Time 0.024 seconds

An Improved FastSLAM Algorithm using Fitness Sharing Technique (적합도 공유 기법을 적용한 향상된 FastSLAM 알고리즘)

  • Kwon, Oh-Sung;Hyeon, Byeong-Yong;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.487-493
    • /
    • 2012
  • SLAM(Simultaneous Localization And Mapping) is a technique used by robots and autonomous vehicles to build up a map within an unknown environment and estimate a place of robot. FastSLAM(A Factored Solution to the SLAM) is one of representative method of SLAM, which is based on particle filter and extended Kalman filter. However it is suffered from loss of particle diversity. In this paper, new approach using fitness sharing is proposed to supplement loss of particle diversity, compared and analyzed with existing methods.

Development of a WPAN-based Self-positioning System for Indoor Flying Robots (실내 비행 로봇을 위한 WPAN 기반 자가 측위 시스템 개발)

  • Lim, Jeong-Min;Jeong, Won-Min;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2015
  • As flying robots are becoming popular, there are increased needs to use themforsuch purposes as parcel delivery, serving in restaurants, and stage performances. To control flying robots such as quad copters, localization is essential. In order to properly position flying robots, many techniques are in development, including IR (infra-red)-based systemswhich catch markers on a flying robot in order that it can position itself. However, this technique demonstrates only short coverage. Furthermore, localization from inertial sensors diverges as time passes. For this reason, this paper suggests a TWR (two-way ranging) based positioning technique. Despite the weaknesses in currently available TWR system, this paper suggests a self-positioning and outlier detection technique in order to provide reliable position information with a faster update rate. The self-positioning system sends a shorter message which reduces wireless traffic. By detecting and removing outlier measurements, a positioning result with better accuracy is acquired. Finally, this paper shows that the suggesting system detects outlierssequentially from less than half the number of anchors in localization system according to the degree of outlier in measurement and the noise level. By performing an outlier algorithm, better positioning accuracy is acquired as shown in the experimental result.

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

Development of Precise Localization System for Autonomous Mobile Robots using Multiple Ultrasonic Transmitters and Receivers in Indoor Environments (다수의 초음파 송수신기를 이용한 이동 로봇의 정밀 실내 위치인식 시스템의 개발)

  • Kim, Yong-Hwi;Song, Ui-Kyu;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.353-361
    • /
    • 2011
  • A precise embedded ultrasonic localization system is developed for autonomous mobile robots in indoor environments, which is essential for autonomous navigation of mobile robots with various tasks. Although ultrasonic sensors are more cost-effective than other sensors such as LRF (Laser Range Finder) and vision, they suffer inaccuracy and directional ambiguity. First, we apply the matched filter to measure the distance precisely. For resolving the computational complexity of the matched filter for embedded systems, we propose a new matched filter algorithm with fast computation in three points of view. Second, we propose an accurate ultrasonic localization system which consists of three ultrasonic receivers on the mobile robot and two or more transmitters on the ceiling. Last, we add an extended Kalman filter to estimate position and orientation. Various simulations and experimental results show the effectiveness of the proposed system.

Study on the Localization Improvement of the Dead Reckoning using the INS Calibrated by the Fusion Sensor Network Information (융합 센서 네트워크 정보로 보정된 관성항법센서를 이용한 추측항법의 위치추정 향상에 관한 연구)

  • Choi, Jae-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.744-749
    • /
    • 2012
  • In this paper, we suggest that how to improve an accuracy of mobile robot's localization by using the sensor network information which fuses the machine vision camera, encoder and IMU sensor. The heading value of IMU sensor is measured using terrestrial magnetism sensor which is based on magnetic field. However, this sensor is constantly affected by its surrounding environment. So, we isolated template of ceiling using vision camera to increase the sensor's accuracy when we use IMU sensor; we measured the angles by pattern matching algorithm; and to calibrate IMU sensor, we compared the obtained values with IMU sensor values and the offset value. The values that were used to obtain information on the robot's position which were of Encoder, IMU sensor, angle sensor of vision camera are transferred to the Host PC by wireless network. Then, the Host PC estimates the location of robot using all these values. As a result, we were able to get more accurate information on estimated positions than when using IMU sensor calibration solely.

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

Localization and size estimation for breaks in nuclear power plants

  • Lin, Ting-Han;Chen, Ching;Wu, Shun-Chi;Wang, Te-Chuan;Ferng, Yuh-Ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.193-206
    • /
    • 2022
  • Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size estimation are proposed. A break event can be promptly detected and isolated after its occurrence by simultaneously monitoring changes in the sensing readings and by employing an interquartile range-based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can be located as the position whose lead field vector is most orthogonal to the noise subspace of that data block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural networks in selecting the best regression model for the available data, we can estimate the break size using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental results demonstrated that the MUSIC method could distinguish two near breaks. However, if the two breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes estimated by the proposed deep learning model were close to their actual values, but relative errors of more than 8% were seen while estimating small breaks' sizes.

Robust Skyline Extraction Algorithm For Mountainous Images (산악 영상에서의 지평선 검출 알고리즘)

  • Yang, Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Skyline extraction in mountainous images which has been used for navigation of vehicles or micro unmanned air vehicles is very hard to implement because of the complexity of skyline shapes, occlusions by environments, dfficulties to detect precise edges and noises in an image. In spite of these difficulties, skyline extraction is avery important theme that can be applied to the various fields of unmanned vehicles applications. In this paper, we developed a robust skyline extraction algorithm using two-scale canny edge images, topological information and location of the skyline in an image. Two-scale canny edge images are composed of High Scale Canny edge image that satisfies good localization criterion and Low Scale Canny edge image that satisfies good detection criterion. By applying each image to the proper steps of the algorithm, we could obtain good performance to extract skyline in images under complex environments. The performance of the proposed algorithm is proved by experimental results using various images and compared with an existing method.

Development of Dead Reckoning Algorithm Considering Wheel Slip Ratio for Autonomous Vehicle (자율 주행 차량을 위한 슬립율 기반의 추측항법 알고리즘 개발)

  • Kwon, Jaejoon;Yoo, Wongeun;Lee, Hoonhee;Shin, Dong Ryoung;Park, Kyungtaek;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2014
  • Recently, the interest in autonomous vehicle which is an aggregate of the automotive control technology is increasing. In particular, researches on the self-localization technology that is directly connected with stable driving of autonomous vehicle have been performed. Various dead reckoning technologies which are solutions for resolving the limitation of GPS have been introduced. However, the conventional dead reckoning technologies have two disadvantages to apply on the autonomous vehicle. First one is that the expensive sensors must be equipped additionally. The other one is that the accuracy of self-localization decreases caused by wheel slip when the vehicle's motion changed rapidly. Based on this background, in this paper, the wheel speed sensor which is equipped on most of vehicles was used and the dead reckoning algorithm considering wheel slip ratio was developed for autonomous vehicle. Finally, in order to evaluate the performance of developed algorithm, the various simulation were conducted and the results were compared with the conventional algorithm.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.