• Title/Summary/Keyword: Localization algorithm

Search Result 809, Processing Time 0.036 seconds

Development of an Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동로봇을 위한 장애물 회피 알고리즘 개발)

  • Kim Hongryeol;Kim Dae Won;Kim Hong-Seok;Sohn SooKyung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.291-299
    • /
    • 2005
  • An obstacle avoidance algorithm for a network-based autonomous mobile robot is proposed in this paper. The obstacle avoidance algorithm is based on the VFH(Vector Field Histogram) algorithm and two delay compensation methods with the VFH algorithm are proposed for a network-based robot with distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the environmental sensor information is compensated by prospection with acquired environmental sensor information, measured network delays, and the kinematic model of the robot. The compensated environmental sensor information is used for building polar histogram with the VFH algorithm. Secondly, a sensor fusion algorithm for localization of the robot is proposed to compensate the delay of odometry sensor information and the delay of environmental sensor information. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal positioning is shown here.

Performance Enhancement of an Obstacle Avoidance Algorithm using a Network Delay Compensationfor a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동 로봇을 위한 시간지연 보상을 통한 장애물 회피 알고리즘의 성능 개선)

  • Kim, Joo-Min;Kim, Jin-Woo;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1898-1899
    • /
    • 2011
  • In this paper, we propose an obstacle avoidance algorithm for a network-based autonomous mobile robot. The obstacle avoidance algorithm is based on the VFH (Vector Field Histogram) algorithm and delay-compensative methods with the VFH algorithm are proposed for the network-based robot that is a unified system composed of distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the compensated readings of the sensors are used for building the polar histogram of the VFH algorithm. Secondly, a sensory fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of the readings of an odometry sensor and the delay of the readings of the environmental sensors. The performance enhancements of the proposed obstacle avoidance algorithm from the viewpoint of efficient path generation and accurate goal positioning are also shown in this paper through some simulation experiments by the Marilou Robotics Studio Simulator.

  • PDF

A Study on the RSS Routing Algorithm for Asset Management System (자산관리 시스템을 위한 RSS 라우팅 알고리즘에 관한 연구)

  • Lee, Min-Goo;Kang, Jung-Hoon;Lim, Ho-Jung;Yoo, Jun-Jae;Yoon, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.289-291
    • /
    • 2005
  • Even though a lot of routing algorithms have been proposed, an omnipotent algorithm of routing technique, which has optimal efficiency, does not exist. Therefore, A routing algorithm in a sensor network is an application oriented; the best effective routing algorithm depends on which application it is used to. In this paper, the routing algorithm is proposed for the purpose of monitoring a movement of Assets in office. This Paper proposes a new multi-hop routing algorithm, that is, RSS(Received Signal Strength) value which was used in a localization of sensor network is applied to routing algorithm.

  • PDF

Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter (무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.

Development of an Algorithm for P-wave Arrival Time determination Using Amoving Window Function (가변창문함수를 이용한 미소파괴음의 P파 도달시간 결정 알고리즘 개발)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Lee, Chang-Soo;Choi, Young-Chul;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.103-113
    • /
    • 2015
  • This study presents a novel algorithm for determining the P-wave arrival time using amoving window function to improve source localization in low-SNR (signal-to-noise ratio)acoustic emissions. The proposed algorithm was applied to low-SNR signals to verify the accuracy of measurements against existing algorithms. When other algorithms were applied, the test results revealed that SNR decreased and accuracy was reduced, especially where SNR wasless than 2.14. The proposed algorithm using amoving window function considers the frequency characteristic and signal amplitude simultaneously, and produced reliable results where SNR was 2.14.

An Improved DV-Hop Localization Algorithm in Wireless Ad Hoc Networks (무선 애드 혹 네트워크에서 향상된 DV-Hop 기반 위치인식 알고리즘)

  • Lee, Sang-Woo;Lee, Dong-Yul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • DV-Hop algorithm is not accurate in estimating geographic location of nodes because the average size for one hop is calculated without considering of the positioning error. In this paper, a novel algorithm based on DV-Hop algorithm is proposed for the approach to estimating the average size of a hop by minimizing anchor's positioning error using Least Square Error with other anchors. Moreover, unknown nodes have their own average size for one hop to compensate for the location error of the unknown occurring as more than the minimum hop counts to the distance. Simulation results show that the proposed algorithm has more accuracy than DV-Hop has in positioning.

A Fusion of Vehicle Sensors and Inter-Vehicle Communications for Vehicular Localizations (자동차 센서와 자동차 간 통신의 융합 측위 알고리듬)

  • Bhawiyuga, Adhitya;Nguyen, Hoa-Hung;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.544-553
    • /
    • 2012
  • A vehicle localization technology is an essential component to support many smart-vehicle applications, e.g. collision warning, adaptive cruise control, and so on. In this paper, we present a new vehicle localization algorithm based on the fusion of the sensing estimates from the local sensors and the GPS estimates from the inter-vehicle communications. The proposed algorithm consists of the greedy location data mapping algorithm and the position refinement algorithm. The former maps a sensing estimate with a GPS estimate based on the distance between themselves, and then the latter refines the GPS estimate of the subject vehicle based on the law of large numbers. From the numerical results, we demonstrate that the accuracy of the proposed algorithm outperforms that of the existing GPS estimates by at least 30 % in the longitudinal direction and by at least 60% in the lateral direction.

Sensor Fusion for Seamless Localization using Mobile Device Data (센서 융합 기반의 실내외 연속 위치 인식)

  • Kim, Jung-yee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1994-2000
    • /
    • 2016
  • Technology that can determine the location of individuals is required in a variety of applications such as location based control, a personalized advertising. Missing-child prevention and support for field trips, and applications such as push events based on the user's location is endless. In particular, the technology that can determine the location without interruption in the indoor and outdoor spaces have been studied a lot recently. Because emphasizing on accuracy of the positioning, many conventional research have constraints such as using of additional sensing devices or special mounting devices. The algorithm proposed in this paper has the purpose of performing the positioning only with standard equipment of the smart phone that has the most users. In this paper, sensor Fusion with GPS, WiFi Radio Map, Accelerometer sensor and Particle Filter algorithm is designed and implemented. Experimental results of this algorithm shows superior performance than the other compared algorithm. This could confirm the possibility of using proposed algorithm on actual environment.

Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features (스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정)

  • Kil, Se-Kee;Lee, Jong-Shill;Ryu, Je-Goon;Lee, Eung-Hyuk;Hong, Seung-Hong;Shen, Dong-Fan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.

Indoor Localization Scheme of a Mobile Robot Applying REID Technology (RFID 응용 기술을 이용한 이동 로봇의 실내 위치 추정)

  • Kim Sung-Bu;Lee Dong-Hui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.996-1001
    • /
    • 2005
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from. Three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can get the ultrasonic signals from only one or two beacons, because of the obstacles located along the moving path. Therefore, in this paper, as one of our dedicated contribution, the position estimation scheme with less than three sensors has been developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.