• Title/Summary/Keyword: Localization Scheme

Search Result 213, Processing Time 0.027 seconds

Accurate Calibration of Kinematic Parameters for Two Wheel Differential Drive Robots by Considering the Coupled Effect of Error Sources (이륜차동구동형로봇의 복합오차를 고려한 기구학적 파라미터 정밀보정기법)

  • Lee, Kooktae;Jung, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.

Realization of Hybrid Localization System with Lighting LEDs and Ad-Hoc Wireless Network (LED 조명과 애드혹 무선 네트워크를 사용한 하이브리드 측위 시스템 구현)

  • Lee, Yong Up;Park, Joohyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.774-783
    • /
    • 2012
  • A simple, accurate, secure, long-lasting, and portable hybrid positioning system is proposed and designed in this paper. It consists of a lighting LED that generates visible light data corresponding to position information of a target and a Zigbee wireless network communication module with low power, security, and service area expansion characteristics. Under an indoor environment where there is 23.62m distance between an observer and the target, the presented hybrid positioning system is tested and is verified with the functions of Zigbee three hop wireless networking and visible light communication (VLC) scheme. The test results are analyzed and discussed.

Localization of a mobile robot using the appearance-based approach (외향 기반 환경 인식을 사용한 이동 로봇의 위치인식 알고리즘)

  • 이희성;김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.6
    • /
    • pp.47-53
    • /
    • 2004
  • This paper proposes an algerian for determining robot location using appearance-based paradigm. First, this algorithm compresses the image set using Principal Component Analysis(PCA) to obtain a low-dimensional subspace, called the eigenspace, and it makes a manifold that represent a continuous-appearance function. Neural network is employed to estimate the location of the mobile robot from the coefficients of the eigenspace. Then, Kalman filtering scheme is used for the fine estimation of the robot location. The algorithm has been implemented and tested on a mobile robot system. It is shown that the robot location is estimated accurately in several trials.

A Simulation for Robust SLAM to the Error of Heading in Towing Tank (Unscented Kalman Filter을 이용한 Simultaneous Localization and Mapping 기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.339-346
    • /
    • 2006
  • Increased usage of autonomous underwater vehicle (AUV) has led to the development of alternative navigational methods that do not employ the acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small AUV. The SLAM is one of such alternative navigation methods for measuring the environment that the vehicle is passing through and providing relative position of AUV by processing the data from sonar measurements. A technique for SLAM algorithm which uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the AUV and objects. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the SLAM for associating the stored targets the sonar returns at each time step. The proposed SLAM algorithm is tested by simulations under various conditions. The results of the simulation show that the proposed SLAM algorithm is capable of estimating the position of the AUV and the object and demonstrates that the algorithm will perform well in various environments.

  • PDF

A Scheme for Matching Satellite Images Using SIFT (SIFT를 이용한 위성사진의 정합기법)

  • Kang, Suk-Chen;Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.13-23
    • /
    • 2009
  • In this paper we propose an approach for localizing objects in satellite images. Our method exploits matching features based on description vectors. We applied Scale Invariant Feature Transform (SIFT) to object localization. First, we find keypoints of the satellite images and the objects and generate description vectors of the keypoints. Next, we calculate the similarity between description vectors, and obtain matched keypoints. Finally, we weight the adjacent pixels to the keypoints and determine the location of the matched object. The experiments of object localization by using SIFT show good results on various scale and affine transformed images. In this paper the proposed methods use Google Earth satellite images.

  • PDF

A Vehicular License Plate Recognition Framework For Skewed Images

  • Arafat, M.Y.;Khairuddin, A.S.M.;Paramesran, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5522-5540
    • /
    • 2018
  • Vehicular license plate (LP) recognition system has risen as a significant field of research recently because various explorations are currently being conducted by the researchers to cope with the challenges of LPs which include different illumination and angular situations. This research focused on restricted conditions such as using image of only one vehicle, stationary background, no angular adjustment of the skewed images. A real time vehicular LP recognition scheme is proposed for the skewed images for detection, segmentation and recognition of LP. In this research, a polar co-ordinate transformation procedure is implemented to adjust the skewed vehicular images. Besides that, window scanning procedure is utilized for the candidate localization that is based on the texture characteristics of the image. Then, connected component analysis (CCA) is implemented to the binary image for character segmentation where the pixels get connected in an eight-point neighbourhood process. Finally, optical character recognition is implemented for the recognition of the characters. For measuring the performance of this experiment, 300 skewed images of different illumination conditions with various tilt angles have been tested. The results show that proposed method able to achieve accuracy of 96.3% in localizing, 95.4% in segmenting and 94.2% in recognizing the LPs with an average localization time of 0.52s.

A Study on Smart Network Utilizing the Data Localization for the Internet of Things (사물 인터넷을 위한 데이터 지역화를 제공하는 스마트 네트워크에 관한 연구)

  • Kang, Mi-Young;Nam, Ji-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.336-342
    • /
    • 2017
  • Traffic can be localized by reducing the traffic load on the physical network by causing traffic to be generated at the end of the packet network. By localizing traffic, the IoT-based sensitive data-related security issues can be supported effectively. In addition, it can be applied effectively to the next-generation smart network environment without changing the existing network infrastructure. In this paper, a content priority scheme was applied to smart network-based IoT data. The IoT contents were localized to efficiently pinpoint the flow of traffic on the network to enable smart forwarding. In addition, research was conducted to determine the effective network traffic routes through content localization. Through this study, the network load was reduced. In addition, it is a network structure that can guarantee user quality. In addition, it proved that the IoT service can be accommodated effectively in a smart network-based environment.

A Robust Spectrum Sensing Method Based on Localization in Cognitive Radios (인지 무선 시스템에서 위치 추정 기반의 강인한 스펙트럼 검출 방법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • The spectrum sensing is one of the fundamental functions to realize the cognitive radios. One of problems in the spectrum sensing is that the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome the problem, cooperative spectrum sensing method is proposed, which uses a distributed detection model and can increase sensing performance. However, the performance of cooperative spectrum sensing can be still affected by the interference factors such as obstacle and malicious user. Especially, most of cooperative spectrum sensing methods only considered the stationary primary user. In the ubiquitous environment, however the mobile primary users should be considered. In order to overcome the aforementioned problem, in this paper we propose a robust spectrum detection method based on localization where we estimate the location of the mobile primary user, and then based on the location and transmission range of primary user we detect interference users if there are, and then the local sensing reporting from detected interference users are excluded in the decision fusion process. Through simulation, it is shown that the sensing performance of the proposed scheme is more accurate than that of conventional other schemes

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

A Location Estimation Method Using TDOA Scheme in Vessel Environment (선박 환경에서 TDOA 기법에 의한 위치 추정 방법)

  • Kim, Beom-mu;Jeong, Min A;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1934-1942
    • /
    • 2015
  • An estimation problem in the environment which GPS signals do not reach, should be solved by employing an indoor location estimation scheme. Location estimation schemes for indoor environments generally include the AOA, TOA, RSS, Fingerprint, and TDOA. For a ship environment where there exist many spaces enclosed by iron plates, the TDOA scheme is appropriate because location estimation is usually performed at a closed range. In this paper, we address the problem of estimating the location of a terminal under the ship environment. The problem of location estimation by using the TDOA is presented in detail, and then an algorithm for applying the estimation to the ship environment is proposed. Finally, the proposed algorithm of location estimation in a ship by the TDOA scheme is verified through simulations from three viewpoints.