• Title/Summary/Keyword: Local strength

Search Result 1,097, Processing Time 0.031 seconds

Finite Element Post-buckling Analysis of Steel-Concrete Composite Column (철골-콘크리트 합성기둥의 후좌굴 거동에 관한 해석 연구)

  • Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.725-735
    • /
    • 2007
  • The local buckling strength and post-local buckling strength of thin steel plates in the steel-concrete composite column were evaluated by nonlinear finite element analyses. The proposed width-to-thickness limit ratio was based on elastic buckling analyses, in which the increased local buckling capacity of the plate due to the in-filled concrete was considered by the boundary conditions of the thin plate. Considering the initial imperfections and residual stresses, we determined the initial local buckling strength and post-local buckling strength of the thin plates with various width-to-thickness ratios. The formula to evaluate the compressive capacity of the steel-concrete composite column based on the effective width of the plate was proposed. For verification, values determined by the formula were compared with the experimental results.

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel cross-sections

  • Theofanous, M.;Gardner, L.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.73-92
    • /
    • 2012
  • The effect of element interaction and material nonlinearity on the ultimate capacity of stainless steel plated cross-sections is investigated in this paper. The focus of the research lies in cross-sections failing by local buckling; member instabilities, distortional buckling and interactions thereof with local buckling are not considered. The cross-sections investigated include rectangular hollow sections (RHS), I sections and parallel flange channels (PFC). Based on previous finite element investigations of structural stainless steel stub columns, parametric studies were conducted and the ultimate capacity of the aforementioned cross-sections with a range of element slendernesses and aspect ratios has been obtained. Various design methods, including the effective width approach, the direct strength method (DSM), the continuous strength method (CSM) and a design method based on regression analysis, which accounts for element interaction, were assessed on the basis of the numerical results, and the relative merits and weaknesses of each design approach have been highlighted. Element interaction has been shown to be significant for slender cross-sections, whilst the behaviour of stocky cross-sections is more strongly influenced by the material strain-hardening characteristics. A modification to the continuous strength method has been proposed to allow for the effect of element interaction, which leads to more reliable ultimate capacity predictions. Comparisons with available test data have also been made to demonstrate the enhanced accuracy of the proposed method and its suitability for the treatment of local buckling in stainless steel cross-sections.

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.301-306
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are a few studies for forming process. The forming technology considered in this paper is form type process, which have many advantages for farming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

  • PDF

Bond of Deformed Bars to Concrete : Effects of Confinement and Strength of Concrete (철근 콘크리트 보-기둥 접합부의 부착거동에 대한 콘크리트 강도 및 보강철근의 효과)

  • 최기봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 1991
  • Slippage of beam longitudinal reinforcement at beam-column connections is an important cause of damage to reinforced concrete frames under static and dynamic loads, This paper summarizes the results of an experimen¬tal study on the effects of confinements and compressive strength of concrete on the local bond stress-slip cha¬racteristics of deformed bars. I t is concluded from experimental results that, as far as the bond splittmg cracks are restrained by the vertical column reinforcement, confinement of concrete by transverse reinforcement has insignigicant direct effect on the local bond behavior. The ultimate bond strength, however, Increases pro¬portionally with the square root of concrete compressive strength. An empirical model was developed for local bond st ressslip relationslip of deformed bars in confined concrete of different compressive strengths.

Evaluation of the Changes in Local Paper Structure and Paper Properties Depending on the Forming Elements Types (탈수소자에 의한 종이 미세구조 및 물성 변화 평가)

  • Sung, Yong-Joo;Keller, D. Steven
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The influence of different forming elements on the local paper structure and the related paper properties was investigated in this study. Specifically, a conventional papermaking foil system and a velocity induced drainage (VID) system were compared. The study involved the analysis of the product samples obtained from the commercial machine trials. The paper samples produced with VID forming systems showed better formation. The deterministic patter in the local structural profile map of the Foil samples indicated the structure of foil samples was more supple after forming process and then easier to be marked by various fabrics such as wet pressing fabric. The higher bulk was observed in the VID samples, which resulted in higher scattering coefficient, lower ZDT strength, and higher bending stiffness.

Influence of Corner Rounding on Local Buckling Strength in Square Sectioned Steel Column (사각단면 강기둥 모서리 곡률의 국부좌굴 강도에 대한 영향 평가)

  • Han Keum Ho;Kim Ki Un;Kim Jong Heon;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1096-1101
    • /
    • 2004
  • Generally, the buckling of thin-walled structures has studied for rectangular sections or circular sections. Rectangular sections have small stiffness and circular sections have large stiffness when they are compared with rectangular sections for local buckling. But both of them have similar stiffness to column buckling. Therefore in this paper, we are going to analyze the local buckling for the box section with rounded comer and compare with rectangular section. Also we confirm that the rounded comer section has larger local buckling strength than rectangular section.

  • PDF

Analysis and tests of flexibly connected thin-walled channel frames

  • Tan, S.H.;Seah, L.K.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.269-284
    • /
    • 1994
  • The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical approximation of the connection flexibility-moment relationship. Local instability such as local buckling and torsional flexural buckling of the member are included in the analysis. The full response of the frame, up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis. Agreement between the theoretical and experimental results is acceptable. The investigation also shows that connection flexibility and local instability such as local buckling and torsional flexural buckling can affect the behaviour and strength of thin-walled frames significantly. The results can also provide further insight into the advanced study of practical structures where interaction between flexible connections and phenomenon associated with thin-walled members are present.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

A Study on the Local Buckling Strength of Stainless Steel 304 (스테인리스 304 강재의 국부좌굴에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • Current steel-framed building design codes are based on theoretical and experimental researches on the conventional structural steel. However, the yield phenomenon of austenitic stainless steel, which is characterized by continuous yielding, is quite different from that of conventional structural steel. The offset strength, which should determine the design strength, may affect the limits of width-thickness ratio of current design codes. Stub column test results showed that the limits of width-thickness ratio satisfied both ASD and LRFD codes when 0.2% offset strength was regarded as design strength. In addition, the local buckling strengths of all stainless steel stub columns did not decrease rapidly compared with those of conventional structural steel columns, even though the width-thickness ratio exceeded the design limit.