• Title/Summary/Keyword: Local histogram equalization

Search Result 39, Processing Time 0.02 seconds

Detection for Operation Chain: Histogram Equalization and Dither-like Operation

  • Chen, Zhipeng;Zhao, Yao;Ni, Rongrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3751-3770
    • /
    • 2015
  • Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.

Contrast Enhancement Using a Density based Sub-histogram Equalization Technique (밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.10-21
    • /
    • 2009
  • In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes those regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrast in the images and the results are compared to the conventional approaches to show its superiority.

Real-time Haze Removal Method using Brightness Transformation based on Atmospheric Scatter Coefficient Rate and Local Histogram Equalization (대기 산란 계수 비율 기반의 밝기변환과 지역적 히스토그램 평활화를 이용한 실시간 안개 제거 방법)

  • Lee, Jae-Won;Hong, Sung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.10-21
    • /
    • 2016
  • Images taken from outdoor are degraded quality by fog or haze, etc. In this paper, we propose a method that provides the visibility improved images through fog or haze removal. We proposed haze removal method that uses brightness transform based on atmospheric scatter coefficient rate with local histogram equalization. To calculate the transmission rate that indicate fog rate in original image, we use atmospheric scatter coefficient rate based on quadratic equations about haze model. And primary brightness transformed image can be obtained by using the obtained transmission rate. Also we use local histogram equalization with proposed brightness transform for effectively image visibility enhancement. Unlike existing methods, our method can process real-time with stable and effect image visibility enhancement. Proposed method use only the luminance images processed by good performance surveillance systems because it represents the real-time processing is required, black-box, digital camera and multimedia equipment is applicable. Also because it shows good performance only with the luminance images processed, Surveillance systems, black boxes, digital cameras, and multimedia devices etc, that require real-time processing can be applied.

A study on the application of Plateau equalization algorithm for contrast enhancement of real-time thermal image (Plateau equalization 알고리즘을 적용한 실시간 열영상 대조비 개선에 관한 연구)

  • Cho Heung-Gi;Kim Soo-Gon;Lee Jeong-Bok;Lee Won-Sun;Jeon Hee-Hong
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.186-189
    • /
    • 2002
  • Real-time thermal image is obtained by thermal imaging systems measuring radiant emittence according to law of Plank's blackbody radiation. The histogram of thermal image is not uniform. The signal bands of background and target are separated and grouped in narrow bands. In such a system, contrast enhancement indispensible to distinguish target from background. In this study, plateau histogram equalization using local histogram is proposed for contrast enhancement.

  • PDF

Comparison of Based on Histogram Equalization Techniques by Using Normalization in Thoracic Computed Tomography (흉부 컴퓨터 단층 촬영에서 정규화를 사용한 다양한 히스토그램 평준화 기법을 비교)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.473-480
    • /
    • 2021
  • This study was purpose to method that applies for improving the image quality in CT and X-ray scan, especially in the lung region. Also, we researched the parameters of the image before and after applying for Histogram Equalization (HE) such as mean, median values in the histogram. These techniques are mainly used for all type of medical images such as for Chest X-ray, Low-Dose Computed Tomography (CT). These are also used to intensify tiny anatomies like vessels, lung nodules, airways and pulmonary fissures. The proposed techniques consist of two main steps using the MATLAB software (R2021a). First, the technique should apply for the process of normalization for improving the basic image more correctly. In the next, the technique actively rearranges the intensity of the image contrast. Second, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method was used for enhancing small details, textures and local contrast of the image. As a result, this paper shows the modern and improved techniques of HE and some advantages of the technique on the traditional HE. Therefore, this paper concludes that various techniques related to the HE can be helpful for many processes, especially image pre-processing for Machine Learning (ML), Deep Learning (DL).

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.

An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement

  • Lee, Joonwhoan;Pant, Suresh Raj;Lee, Hee-Sin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • The main purpose of image enhancement is to improve certain characteristics of an image to improve its visual quality. This paper proposes a method for image contrast enhancement that can be applied to both medical and natural images. The proposed algorithm is designed to achieve contrast enhancement while also preserving the local image details. To achieve this, the proposed method combines local image contrast preserving dynamic range compression and contrast limited adaptive histogram equalization (CLAHE). Global gain parameters for contrast enhancement are inadequate for preserving local image details. Therefore, in the proposed method, in order to preserve local image details, local contrast enhancement at any pixel position is performed based on the corresponding local gain parameter, which is calculated according to the current pixel neighborhood edge density. Different image quality measures are used for evaluating the performance of the proposed method. Experimental results show that the proposed method provides more information about the image details, which can help facilitate further image analysis.

Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images

  • Sengee, Nyamlkhagva;Sengee, Altansukh;Adiya, Enkhbolor;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1409-1416
    • /
    • 2012
  • An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

An Improvement of Recognition Performance Based on Nonlinear Equalization and Statistical Correlation (비선형 평활화와 통계적 상관성에 기반을 둔 인식성능 개선)

  • Shin, Hyun-Soo;Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.555-562
    • /
    • 2012
  • This paper presents a hybrid method for improving the recognition performance, which is based on the nonlinear histogram equalization, features extraction, and statistical correlation of images. The nonlinear histogram equalization based on a logistic function is applied to adaptively improve the quality by adjusting the brightness of the image according to its intensity level frequency. The statistical correlation that is measured by the normalized cross-correlation(NCC) coefficient, is applied to rapidly and accurately express the similarity between the images. The local features based on independent component analysis(ICA) that is used to calculate the NCC, is also applied to statistically measure the correct similarity in each images. The proposed method has been applied to the problem for recognizing the 30-face images of 40*50 pixels. The experimental results show that the proposed method has a superior recognition performances to the method without performing the preprocessing, or the methods of conventional and adaptively modified histogram equalization, respectively.

An FPGA Implementation of Parallel Hardware Architecture for the Real-time Window-based Image Processing (실시간 윈도우 기반 영상 처리를 위한 병렬 하드웨어 구조의 FPGA 구현)

  • Jin S.H.;Cho J.U.;Kwon K.H.;Jeon J.W.
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.223-230
    • /
    • 2006
  • A window-based image processing is an elementary part of image processing area. Because window-based image processing is computationally intensive and data intensive, it is hard to perform ail of the operations of a window-based image processing in real-time by using a software program on general-purpose computers. This paper proposes a parallel hardware architecture that can perform a window-based image processing in real-time using FPGA(Field Programmable Gate Array). A dynamic threshold circuit and a local histogram equalization circuit of the proposed architecture are designed using VHDL(VHSIC Hardware Description Language) and implemented with an FPGA. The performances of both implementations are measured.