• Title/Summary/Keyword: Local corrosion

Search Result 240, Processing Time 0.031 seconds

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • It is well known that during the oxygen cutting process residual thermal stresses are produced in weldment. The local non-uniform heating and subsequent cooling which takes place during any welding process causes complex thermal strains and stresses to finally lead to residual stresses exceed to the yield stress. High tensile stresses combined with applied structural load in the region near the welded joint can given rise to distortion brittle fracture change of the fatigue strength and stress corrosion cracking. The appropriate treatment of the welded component which reduces the peak of he welding residual stresses is believed to lower risk of the fracture during the service of the structure. In this study the impact loading in oxygen cutting frame was applied to reduce the residual stress. After applying the impact loading redistribution of resid-ual stress was measured by cutting method and the effect of fatigue was tested.

  • PDF

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

The Study on Tension and Thermal Properties of Baised Installed Sleeve (편중 시공된 직선 슬리브의 장력 및 열적 특성 분석 연구)

  • Ahn, Sang-Hyun;Kim, Byung-Geol;Kim, Sang-Shu;Shon, Hong-Kwan;Park, In-Pyo;Kim, Sung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1209-1210
    • /
    • 2008
  • According to previous report, aged sleeves for old transmission lines have variable defects such as biased installed case or corrosion of steel sleeve. Biased installed sleeve occupied 20 percent among the investigated aged sleeves. This defect must cause local heating of splice connector and limit power transmission capacity. It even inspire falling out of overhead conductor from sleeves. This paper studies thermal properties and tension for ACSR conductor in case of biased installed sleeve model. The detailed results were presented in the text.

  • PDF

The Effect of Die Design and Process Condition in Precision Forging for AI7075 Alloy(l) (AI7075합금의 정밀단조시 금형설계와 단조조건의 영향(l)-실험과 상계해석을 중심으로-)

  • 이영선;이정환;정형식;이상용;이동원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.105-112
    • /
    • 1996
  • Aluminium alloy have been used extensively as forging materials for aircraft components due to their high specific strength and corrosion resistance. A large portions of these materials are used as airframe components consisted of various combination of such Rib-Web structure. But the problem of high forging pressure and defect which were caused by narrow Rib thickness prevented from the favorable developments and laboratory scaled trials. In this study, optimization of forging variables such as corner radius and temperature in Rib-Wed structure were established. The 2 mm of corner radius minimized the forging pressure to get the fixed Rib height, which well coincided with theoretical result according to Upper-Bound analysis. And optimum workpiece temperature was below 450$^{\circ}C$ in consideration of grain growth and forging defects by local melting.

  • PDF

Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

Application development of 7050Al alloy in small arms. (소화기용 7050 Al합금소재의 적용성 개발)

  • 김헌규;최중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1093-1097
    • /
    • 1996
  • The Substitution development of 7075-T6 Al alloy to 7050-T74 Al alloy in small arms to improve anti-stress corrosion cracking was processed along with mass productivity consideration. To meet 7050 Al alloy material characteristics Indirect extrusion type was adopted and local heating above recrystalization temperature in forging process had to be avoided. The T74 aging treatment was 12$0^{\circ}C$ -6hrs and 175$^{\circ}C$ -12hrs and was appropriate for both machanical and anti-cohesion properties. In accessment of field application test 7050Al alloy made parts of small arms showed equivalent or better performance than 7075 Al alloy.

  • PDF

Experimental Study on Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 실험적 거동분석)

  • 이성우;김제인;김병석;배두병;박성용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.357-364
    • /
    • 2003
  • In the conventional reinforced-concrete bridge deck, concrete and steels are likely to be deteriorated and corroded under the influence of noxious environment. To cope with these problems caused in the conventional reinforced-concrete bridge deck, pultruded composite bridge deck having light weight, high strength, corrosion resistance and durability is developed. For the DB24 truck load pultruded composite bridge deck is designed and fabricated. For the fabricated and assembled deck panel, structural testing such as flexural test, local fatigue test, flexural fatigue test are conducted to verify the deck capacity experimentally. In this paper design for deck profile, details of connection and experimental results of composite bridge deck are presented.

  • PDF

Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

  • Campanile, A.;Piscopo, V.;Scamardella, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-36
    • /
    • 2018
  • The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

Strengthening of deficient steel SHS columns under axial compressive loads using CFRP

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholamreza;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.69-79
    • /
    • 2019
  • Numerous problems have always vexed engineers with buckling, corrosion, bending, and over-loading in damaged steel structures. The present study aims to study the possible effects of Carbon Fiber Reinforced Polymer (CFRP) for strengthening deficient Steel Square Hollow Section (SHS) columns. To this end, the effects of axial loading, stiffness values, axial displacement, the shape of deficient on the length of steel SHS columns were evaluated based on a detailed parametric study. Ten specimens were tested to failure under axial compression in laboratory and simulated by using Finite Element (FE) analysis based on numerical approach. The results indicated that the application of CFRP sheets resulted in reducing stress in the damage location and preventing or retarding local deformation around the deficiency location appropriately. In addition, the retrofitting method could increase loading the carrying capacity of specimens.

A Study on Corrosive Wear Characteristics and the Mechanism of Austempered Low-Alloy Ductile Iron (오스템퍼링 한 저합금구상흑연주철의 부식마멸특성 및 그 기구에 관한 연구)

  • 박흥식;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1404-1411
    • /
    • 1993
  • This study was undertaken to investigate the corrosive wear charateristics upon various transformation condition of austempered low-alloy ductile cast iron in corrosive environments against mating specimen made of the hardened SM45C. The corrosive wear test was carried out by rubbing the annular surface of two test pieces in distilled water and aqueous solution at constant sliding speed of 0.5m/s. In severe wear region, the corrosive wear rate Wc increased hastily with NaCl concentration owing to intermetallic adhesion but Wc went down slowly in mild wear region due to lubricating effect of the corrosion product. The critical sliding distance decreased with increasing NaCl concentration due to increased generation rate of the corrosion product and the specific corrosive wear rate has maximum in 1% NaCl aqueous solution at mild wear region. With the variation of matrix, the corrosive wear resistance of the fine acicular bainite was higher than that of coarse upper bainite because of reducing the local cell reaction by carbides. A growth in volume fraction of retained austenite in matrix increased the Wc due to soften surface, but has a declining tendency of Wc in mild wear region.