• Title/Summary/Keyword: Local clustering

Search Result 341, Processing Time 0.038 seconds

Scene Change Detection Using Local Information (지역적 정보를 이용한 장면 전환 검출)

  • Shin, Seong-Yoon;Shin, Kwang-Sung;Lee, Hyun-Chang;Jin, Chan-Yong;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.151-152
    • /
    • 2012
  • This paper proposes a Scene Change Detection method using the local decision tree and clustering. The local decision tree detects cluster boundaries wherein local scenes occur, in such a way as to compare time similarity distributions among the difference values between detected scenes and their adjacent frames, and group an unbroken sequence of frames with similarities in difference value into a cluster unit.

  • PDF

Scene Change Detection Using Local Information (지역적 정보를 이용한 장면 전환 검출)

  • Shin, Seong-Yoon;Jin, Chan-Yong;Rhee, Yang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1199-1203
    • /
    • 2012
  • This paper proposes a Scene Change Detection method using the local decision tree and clustering. The local decision tree detects cluster boundaries wherein local scenes occur, in such a way as to compare time similarity distributions among the difference values between detected scenes and their adjacent frames, and group an unbroken sequence of frames with similarities in difference value into a cluster unit.

Clustering of transmission system using the electrical distance (전기적 거리를 이용한 송전계통 클러스터링)

  • Hwang, Ho-Yoon;Kim, Hyun-Hong;Won, Jong-Jip;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.591_592
    • /
    • 2009
  • For a similar price signal to local consumer, a regional clustering is important that can transfer a equal sign to the bus which has each different price on the basis of bus. If you take LMP and local information this method into consideration at the same time, and you give weight on neither one side, buses on a borderline can move on arbitrary. For solving this problem, in this paper will propose a clustering method to have applied new concept called 'electric distance'.

  • PDF

Color image quantization considering distortion measure of local region block on RGB space (RGB 공간상의 국부 영역 블록의 왜곡척도를 고려한 칼라 영상 양자화)

  • 박양우;이응주;김경만;엄태억;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.848-854
    • /
    • 1996
  • Many image display devices allow only a limited number of colors to be simultaneously displayed. in disphaying of natural color image using color palette, it is necessary to construct an optimal color palette and the optimal mapping of each pixed of the original image to a color from the palette. In this paper, we proposed the clustering algorithm using local region block centered one color cluster in the prequantized 3-D histogram. Cluster pairs which have the least distortion error are merged by considering distortion measure. The clustering process is continued until to obtain the desired number of colors. The same as the clustering process, original color value. The proposed algorithm incroporated with a spatial activity weighting value which is reflected sensitivity of HVS quantization errors in smoothing region. This method produces high quality display images and considerably reduces computation time.

  • PDF

Cluster ing for Analysis of Raman Hyper spectral Dental Data

  • Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In this research, we presented an effective clustering method based on ICA for the analysis of huge Raman hyperspectral dental data. The hyperspectral dataset captured by HR800 micro Raman spectrometer at UMKC-CRISP(University of Missouri-Kansas City Center for Research on Interfacial Structure and Properties), has 569 local points. Each point has 1,005 hyperspectal dentin data. We compared the clustering effectiveness and the clustering time for the case of using all dataset directly and the cases of using the scores after PCA and ICA. As the result of experiment, the cases of using the scores after PCA and ICA showed, not only more detailed internal dentin information in the aspect of medical analysis, but also about 7~19 times much shorter processing times for clustering. ICA based approach also presented better performance than that of PCA, in terms of the detailed internal information of dentin and the clustering time. Therefore, we could confirm the effectiveness of ICA for the analysis of Raman hyperspectral dental data.

Shot-change Detection using Hierarchical Clustering (계층적 클러스터링을 이용한 장면 전환점 검출)

  • 김종성;홍승범;백중환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1507-1510
    • /
    • 2003
  • We propose UPGMA(Unweighted Pair Group Method using Average distance) as hierarchical clustering to detect abrupt shot changes using multiple features such as pixel-by-pixel difference, global and local histogram difference. Conventional $\kappa$-means algorithm which is a method of the partitional clustering, has to select an efficient initial cluster center adaptively UPGMA that we propose, does not need initial cluster center because of agglomerative algorithm that it starts from each sample for clusters. And UPGMA results in stable performance. Experiment results show that the proposed algorithm works not only well but also stably.

  • PDF

Twitter Hashtags Clustering with Word Embedding (Word Embedding기반 Twitter 해시 태그 클러스터링)

  • Nguyen, Tien Anh;Yang, Hyung-Jeong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.179-180
    • /
    • 2019
  • Nowadays, clustering algorithm is considered as a promising solution for lacking human-labeled and massive data of social media sites in numerous machine learning tasks. Many researchers propose disaster event detection systems have ability to determine special local events, such as missing people, public transport damage by clustering similar tweets and hashtags together. In this paper, we try to extend tweet hashtag feature definition by applying word embedding. The experimental results are described that word embedding achieve better performance than the reference method.

  • PDF

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

An Energy Efficient Routing Algorithm based on Center of Local Clustering in Wireless Sensor Networks (무선센서 네트워크에서의 지역-중앙 클러스터 라우팅 방법)

  • He, Jin Ming;Rhee, Chung-Sei
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2014
  • Recently, lot of researches for the multi-level protocol have been done to balance the sensor node energy consumption of WSN and improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been proposed to improve energy efficiency and apply it to WSN protocol. In this paper, we analyze LEACH algorithm and propose new method based on center of local clustering routing algorithm in wireless sensor networks. We also perform NS-2 simulation to show the performance of our model.

A Study on Technology Forecasting based on Co-occurrence Network of Keyword in Multidisciplinary Journals (다학제 분야 학술지의 주제어 동시발생 네트워크를 활용한 기술예측 연구)

  • Kim, Hyunuk;Ahn, Sang-Jin;Jung, Woo-Sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.49-63
    • /
    • 2015
  • Keyword indexed in multidisciplinary journals show trends about science and technology innovation. Nature and Science were selected as multidisciplinary journals for our analysis. In order to reduce the effect of plurality of keyword, stemming algorithm were implemented. After this process, we fitted growth curve of keyword (stem) following bass model, which is a well-known model in diffusion process. Bass model is useful for expressing growth pattern by assuming innovative and imitative activities in innovation spreading. In addition, we construct keyword co-occurrence network and calculate network measures such as centrality indices and local clustering coefficient. Based on network metrics and yearly frequency of keyword, time series analysis was conducted for obtaining statistical causality between these measures. For some cases, local clustering coefficient seems to Granger-cause yearly frequency of keyword. We expect that local clustering coefficient could be a supportive indicator of emerging science and technology.