• Title/Summary/Keyword: Local clustering

Search Result 341, Processing Time 0.034 seconds

The Redundancy Reduction Using Fuzzy C-means Clustering and Cosine Similarity on a Very Large Gas Sensor Array for Mimicking Biological Olfaction (생물학적 후각 시스템을 모방한 대규모 가스 센서 어레이에서 코사인 유사도와 퍼지 클러스터링을 이용한 중복도 제거 방법)

  • Kim, Jeong-Do;Kim, Jung-Ju;Park, Sung-Dae;Byun, Hyung-Gi;Persaud, K.C.;Lim, Seung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • It was reported that the latest sensor technology allow an 65536 conductive polymer sensor array to be made with broad but overlapping selectivity to different families of chemicals emulating the characteristics found in biological olfaction. However, the supernumerary redundancy always accompanies great error and risk as well as an inordinate amount of computation time and local minima in signal processing, e.g. neural networks. In this paper, we propose a new method to reduce the number of sensor for analysis by reducing redundancy between sensors and by removing unstable sensors using the cosine similarity method and to decide on representative sensor using FCM(Fuzzy C-Means) algorithm. The representative sensors can be just used in analyzing. And, we introduce DWT(Discrete Wavelet Transform) for data compression in the time domain as preprocessing. Throughout experimental trials, we have done a comparative analysis between gas sensor data with and without reduced redundancy. The possibility and superiority of the proposed methods are confirmed through experiments.

Moving object segmentation and tracking using feature based motion flow (특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적)

  • 이규원;김학수;전준근;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1998-2009
    • /
    • 1998
  • An effective algorithm for tracking rigid or non-rigid moving object(s) which segments local moving parts from image sequence in the presence of backgraound motion by camera movenment, predicts the direction of it, and tracks the object is proposed. It requires no camera calibration and no knowledge of the installed position of camera. In order to segment the moving object, feature points configuring the shape of moving object are firstly selected, feature flow field composed of motion vectors of the feature points is computed, and moving object(s) is (are) segmented by clustering the feature flow field in the multi-dimensional feature space. Also, we propose IRMAS, an efficient algorithm that finds the convex hull in order to cinstruct the shape of moving object(s) from clustered feature points. And, for the purpose of robjst tracking the objects whose movement characteristics bring about the abrupt change of moving trajectory, an improved order adaptive lattice structured linear predictor is used.

  • PDF

Self-Organizing Fuzzy Polynomial Neural Networks by Means of IG-based Consecutive Optimization : Design and Analysis (정보 입자기반 연속전인 최적화를 통한 자기구성 퍼지 다항식 뉴럴네트워크 : 설계와 해석)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.264-273
    • /
    • 2006
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) by means of consecutive optimization and also discuss its comprehensive design methodology involving mechanisms of genetic optimization. The network is based on a structurally as well as parametrically optimized fuzzy polynomial neurons (FPNs) conducted with the aid of information granulation and genetic algorithms. In structurally identification of FPN, the design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). For the parametric identification, we obtained the effective model that the axes of MFs are identified by GA to reflect characteristic of given data. Especially, the genetically dynamic search method is introduced in the identification of parameter. It helps lead to rapidly optimal convergence over a limited region or a boundary condition. To evaluate the performance of the proposed model, the model is experimented with using two time series data(gas furnace process, nonlinear system data, and NOx process data).

Data Modeling using Cluster Based Fuzzy Model Tree (클러스터 기반 퍼지 모델트리를 이용한 데이터 모델링)

  • Lee, Dae-Jong;Park, Jin-Il;Park, Sang-Young;Jung, Nahm-Chung;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.608-615
    • /
    • 2006
  • This paper proposes a fuzzy model tree consisting of local linear models using fuzzy cluster for data modeling. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. As a final step, data prediction is performed with a linear model having the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional model tree and artificial neural networks.

Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms

  • Alam, M. Zahangir;Lee, Yun-Mi;Son, Hyo-Jung;Hanna, Lauren H.;Riley, David G.;Mannen, Hideyuki;Sasazaki, Shinji;Park, Se Pill;Kim, Jong-Joo
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.789-800
    • /
    • 2021
  • Objective: Conservation and genetic improvement of cattle breeds require information about genetic diversity and population structure of the cattle. In this study, we investigated the genetic diversity and population structure of the three cattle breeds in the Korean peninsula. Methods: Jeju Black, Hanwoo, Holstein cattle in Korea, together with six foreign breeds were examined. Genetic diversity within the cattle breeds was analyzed with minor allele frequency (MAF), observed and expected heterozygosity (HO and HE), inbreeding coefficient (FIS) and past effective population size. Molecular variance and population structure between the nine breeds were analyzed using a model-based clustering method. Genetic distances between breeds were evaluated with Nei's genetic distance and Weir and Cockerham's FST. Results: Our results revealed that Jeju Black cattle had lowest level of heterozygosity (HE = 0.21) among the studied taurine breeds, and an average MAF of 0.16. The level of inbreeding was -0.076 for Jeju Black, while -0.018 to -0.118 for the other breeds. Principle component analysis and neighbor-joining tree showed a clear separation of Jeju Black cattle from other local (Hanwoo and Japanese cattle) and taurine/indicine cattle breeds in evolutionary process, and a distinct pattern of admixture of Jeju Black cattle having no clustering with other studied populations. The FST value between Jeju Black cattle and Hanwoo was 0.106, which was lowest across the pair of breeds ranging from 0.161 to 0.274, indicating some degree of genetic closeness of Jeju Black cattle with Hanwoo. The past effective population size of Jeju Black cattle was very small, i.e. 38 in 13 generation ago, whereas 209 for Hanwoo. Conclusion: This study indicates genetic uniqueness of Jeju Black cattle. However, a small effective population size of Jeju Black cattle indicates the requirement for an implementation of a sustainable breeding policy to increase the population for genetic improvement and future conservation.

Anatomical Brain Connectivity Map of Korean Children (한국 아동 집단의 구조 뇌연결지도)

  • Um, Min-Hee;Park, Bum-Hee;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 2011
  • Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.

Korean Phoneme Recognition Using Self-Organizing Feature Map (SOFM 신경회로망을 이용한 한국어 음소 인식)

  • Jeon, Yong-Koo;Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.101-112
    • /
    • 1995
  • In order to construct a feature map-based phoneme classification system for speech recognition, two procedures are usually required. One is clustering and the other is labeling. In this paper, we present a phoneme classification system based on the Kohonen's Self-Organizing Feature Map (SOFM) for clusterer and labeler. It is known that the SOFM performs self-organizing process by which optimal local topographical mapping of the signal space and yields a reasonably high accuracy in recognition tasks. Consequently, SOFM can effectively be applied to the recognition of phonemes. Besides to improve the performance of the phoneme classification system, we propose the learning algorithm combined with the classical K-mans clustering algorithm in fine-tuning stage. In order to evaluate the performance of the proposed phoneme classification algorithm, we first use totaly 43 phonemes which construct six intra-class feature maps for six different phoneme classes. From the speaker-dependent phoneme classification tests using these six feature maps, we obtain recognition rate of $87.2\%$ and confirm that the proposed algorithm is an efficient method for improvement of recognition performance and convergence speed.

  • PDF

Geometric Scheme Analysis and Region Segmentation for Industrial CR Images (산업용 CR영상의 기하학적 구도분석과 영역분할)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.124-131
    • /
    • 2009
  • A reliable detection of regions in radiography is one of the most important task before the evaluation of defects on welded joints. The extracted features is to be classified into distinctive clusters for each segmented region. But conventional segmentation techniques give unsatisfactory results for this task due to the spatial superposition of intensity and low signal-to-ratio(SNR) in radiographic images. The usage of global or local processes not only provide the necessary noise resistance but also fail in classification of regions. In this paper, we presents an appropriate approach for segmentation of region-based indications in industrial Computed Radiography(CR) images. The geometric differences between welded and non-welded area which is generated on radiography as the representative regions(background, thickness, middle and welded region in steel tube image) have constructed the hierarchical structure. Although this structure is contaminated by noise, the scheme between regions can be selected by the help of local clustering based on distinctive geometric property of each region. Because of the geometric nature of the considered region and so that the region is selected layer by layer, and that the real class represents the boundary between regions, the vertical and horizontal clustering process in each layer must be judicious. In order to show the effectiveness of this approach, a comparative experiment of various segmentation method is performed on industrial steel tube CR images.

Characterization of Ecological Networks on Wetland Complexes by Dispersal Models (분산 모형에 따른 습지경관의 생태 네트워크 특성 분석)

  • Kim, Bin;Park, Jeryang
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.16-26
    • /
    • 2019
  • Wetlands that provide diverse ecosystem services, such as habitat provision and hydrological control of flora and fauna, constitute ecosystems through interaction between wetlands existing in a wetlandscape. Therefore, to evaluate the wetland functions such as resilience, it is necessary to analyze the ecological connectivity that is formed between wetlands which also show hydrologically dynamic behaviors. In this study, by defining wetlands as ecological nodes, we generated ecological networks through the connection of wetlands according to the dispersal model of wetland species. The characteristics of these networks were then analyzed using various network metrics. In the case of the dispersal based on a threshold distance, while a high local clustering is observed compared to the exponential dispersal kernel and heavy-tailed dispersal model, it showed a low efficiency in the movement between wetlands. On the other hand, in the case of the stochastic dispersion model, a low local clustering with high efficiency in the movement was observed. Our results confirmed that the ecological network characteristics are completely different depending on which dispersal model is chosen, and one should be careful on selecting the appropriate model for identifying network properties which highly affect the interpretation of network structure and function.

A Method for Reducing Path Recovery Overhead of Clustering-based, Cognitive Radio Ad Hoc Routing Protocol (클러스터링 기반 인지 무선 애드혹 라우팅 프로토콜의 경로 복구 오버헤드 감소 기법)

  • Jang, Jin-kyung;Lim, Ji-hun;Kim, Do-Hyung;Ko, Young-Bae;Kim, Joung-Sik;Seo, Myung-hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.280-288
    • /
    • 2019
  • In the CR-enabled MANET, routing paths can be easily destroyed due to node mobility and channel unavailability (due to the emergence of the PU of a channel), resulting in significant overhead to maintain/recover the routing path. In this paper, network caching is actively used for route maintenance, taking into account the properties of the CR. In the proposed scheme, even if a node detects that a path becomes unavailable, it does not generate control messages to establish an alternative path. Instead, the node stores the packets in its local cache and 1) waits for a certain amount of time for the PU to disappear; 2) waits for a little longer while overhearing messages from other flow; 3) after that, the node applies local route recovery process or delay tolerant forwarding strategy. According to the simulation study using the OPNET simulator, it is shown that the proposed scheme successfully reduces the amount of control messages for path recovery and the service latency for the time-sensitive traffic by 13.8% and 45.4%, respectively, compared to the existing scheme. Nevertheless, the delivery ratio of the time-insensitive traffic is improved 14.5% in the proposed scheme.