• Title/Summary/Keyword: Local climate

Search Result 744, Processing Time 0.024 seconds

Assessment of Global Air Quality Reanalysis and Its Impact as Chemical Boundary Conditions for a Local PM Modeling System (전지구 대기질 재분석 자료의 평가와 국지규모 미세먼지 예보모델에 미치는 영향)

  • Lee, Kangyeol;Lee, Soon-Hwan;Kim, EunJi
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1029-1042
    • /
    • 2016
  • The initial and boundary conditions are important factors in regional chemical transport modeling systems. The method of generating the chemical boundary conditions for regional air quality models tends to be different from the dynamically varying boundary conditions in global chemical transport models. In this study, the impact of real time Copernicus atmosphere monitoring service (CAMS) re-analysis data from the modeling atmospheric composition and climate project interim implementation (MACC) on the regional air quality in the Korean Peninsula was carried out using the community multi-scale air quality modeling system (CMAQ). A comparison between conventional global data and CAMS for numerical assessments was also conducted. Although the horizontal resolution of the CAMS re-analysis data is not higher than the conventionally provided data, the simulated particulate matter (PM) concentrations with boundary conditions for CAMS re-analysis is more reasonable than any other data, and the estimation accuracy over the entire Korean peninsula, including the Seoul and Daegu metropolitan areas, was improved. Although an inland area such as the Daegu metropolitan area often has large uncertainty in PM prediction, the level of improvement in the prediction for the Daegu metropolitan area is higher than in the coastal area of the western part of the Korean peninsula.

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

Studies on the Predictability of Heavy Rainfall Using Prognostic Variables in Numerical Model (모델 예측변수들을 이용한 집중호우 예측 가능성에 관한 연구)

  • Jang, Min;Jee, Joon-Beom;Min, Jae-sik;Lee, Yong-Hee;Chung, Jun-Seok;You, Cheol-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.495-508
    • /
    • 2016
  • In order to determine the prediction possibility of heavy rainfall, a variety of analyses was conducted by using three-dimensional data obtained from Korea Local Analysis and Prediction System (KLAPS) re-analysis data. Strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Heavy rainfall occurred in the cloud system with a thick convective clouds. The moisture convergence, temperature and potential temperature advection showed increase into the heavy rainfall occurrence area. The distribution of integrated liquid water content tended to decrease as rainfall increased and was characterized by accelerated convective instability along with increased buoyant energy. In addition, changes were noted in the various characteristics of instability indices such as K-index (KI), Showalter Stability Index (SSI), and lifted index (LI). The meteorological variables used in the analysis showed clear increases or decreases according to the changes in rainfall amount. These rapid changes as well as the meteorological variables changes are attributed to the surrounding and meteorological conditions. Thus, we verified that heavy rainfall can be predicted according to such increase, decrease, or changes. This study focused on quantitative values and change characteristics of diagnostic variables calculated by using numerical models rather than by focusing on synoptic analysis at the time of the heavy rainfall occurrence, thereby utilizing them as prognostic variables in the study of the predictability of heavy rainfall. These results can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of such precipitation. In the analysis of various case studies of heavy rainfall in the future, our study result can be utilized to show the development of the prediction of severe weather.

A Study on a Comparison of Sky View Factors and a Correlation with Air Temperature in the City (하늘시계지수 비교 및 도시기온 상관성 연구: 강남 선정릉지역을 중심으로)

  • Yi, Chaeyeon;Shin, Yire;An, Seung Man
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Counter-Measure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • Yun Seong-Ho;Lee Jeong-Taek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.28-45
    • /
    • 2000
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21-23C for 40 days after heading, increased with long anomalies in 1998-99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than normal in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Tonsil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than Japonica rices, photoperiod sensitive and thermo-sensitive ecotypes

  • PDF

Characteristics of Relational Representation of Light and Architectural Space Elements in Luis Barragan's Houses (루이스 바라간 주택공간에 나타난 빛과 건축공간요소의 상관적 표현 특성)

  • Kim, Ji-Eun;Lee, Jung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.3
    • /
    • pp.48-55
    • /
    • 2014
  • Luis Barragan is a representative Mexican architect. He designed architectural space as a local architect in consideration of the Mexico's harsh Mediterranean climate. His manifestation of the regionality can be found mainly in his precise expression of light. Such method and concept of using light in Barragan's architecture made a huge impact on later architects but detailed studies on this issue have not been made actively. Hence, this paper intended to suggest a starting point or an orientation by illustrating the characteristics of using and expressing light in architecture through his cases of housing works. The study method was as follows. First, the general characteristics of light were identified by analyzing the elements of architectural space that dealt with light and the characteristics of expressing light shown in the architectural space. Second, the architectural background of Luis Barragan and the architectural space elements of the light expressed in his architectural space were extracted to form a hypothetical ground. Third, five of his works on the houses in his prime (after the year of 1945) were analyzed to explore the characteristics of relational representation between light and the architectural space elements in his architecture. Through this process, it was learned that, in his architectural works, light was the embodiment of the location-related, time-based, daily and illusionary experience into architecture. In addition, meditative light could be experienced by contrasting the soft and dispersed light and shadow of the inside space of Barragan's houses with the strong external light. Therefore, through the process above, this study is hoped to provide an opportunity for the contemporary architects of our era to rethink the fundamental correlation between architecture and light.

Establishment and Standardization of Evaluation Procedure for Urban Flooding Analysis Model Using Available Inundation Data (가용 침수 자료를 활용한 도심지 침수 해석 모형의 평가 절차 수립 및 표준화)

  • Shin, Eun Taek;Jang, Dong Min;Park, Sung Won;Eum, Tae Soo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.100-110
    • /
    • 2020
  • Recently, the frequency of typhoon and torrential rain due to climate change is increasing. In addition, the upsurge in the complexity of urban sewer network and impervious surfaces area aggravates the inland flooding damage. In response to these worsening situations, the central and local governments are conducting R&D tasks related to predict and mitigate the flood risk. Researches on the analysis of inundation in urban areas have been implemented through various ways, and the common features were to evaluate the accuracy and justification of the model by comparing the model results with the actual inundation data. However, the evaluation procesure using available urban flooding data are not consistent, and if there are no quantitative urban inundation data, verification has to be performed by using press releases, public complaints, or photos of inundation occurring through 'CCTV'. Because theses materials are not quantitative, there is a problem of low reliability. Therefore, this study intends to develop a comparative analysis procedure on the quantitative degree and applicability of the verifiable inundation data, and a systematic framework for the performance assessment of urban flood analysis model was proposed. This would contribute to the standardization of the evaluation and verification procedure for urban flooding modelling.

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.

Transferring Innovation Capacities to Developing Countries: A KIST-based Strategy (기술혁신역량의 개도국 전수를 위한 전략 연구: KIST사례를 중심으로)

  • Lee, Chang G.;Kim, Jong Joo;Chung, Sun Yang
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.3
    • /
    • pp.709-731
    • /
    • 2017
  • Great attention has been paid to absorptive capacity (AC) as a means of technological innovation. However, few developing countries have demonstrated real success in the development of their technologies and economies. Global issues such as climate change, contagious disease, etc. require more active cooperation between developing and developed countries. This paper makes the novel argument that the donor's transplanting capacity (TC) should be developed and coevolved in concert with the recipient country's AC. Review of the literature shows that AC depends on a prior knowledge base and an intensity of effort. In this article, we analysed the case of KIST and suggest that codification of development experience, localization of innovation capacity, and donor committment comprise the core elements of TC. Nonaka (1994) argued that interaction between tacit knowledge and explicit knowledge can synergize to increase the overall store of available knowledge. Development experience, which leans heavily toward tacit knowledge, should be transformed into explicit knowledge for more efficient technology diffusion. The technological environments of recipient countries vary from those of their donors, which is why innovation capacity should conform to local conditions in order to make transplantation smoother. Donor committment is also critical for successfully transmitting valuable experience.

Monitoring and spatio-temporal analysis of UHI effect for Mansa district of Punjab, India

  • Kaur, Rajveer;Pandey, Puneeta
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.19-39
    • /
    • 2020
  • Urban heat island (UHI) is one of the most important climatic implications of urbanization and thus a matter of key concern for environmentalists of the world in the twenty-first century. The relationship between climate and urbanization has been better understood with the introduction of thermal remote sensing. So, this study is an attempt to understand the influence of urbanization on local temperature for a small developing city. The study focuses on the investigation of intensity of atmospheric and surface urban heat island for a small urbanizing district of Punjab, India. Landsat 8 OLI/TIRS satellite data and field observations were used to examine the spatial pattern of surface and atmospheric UHI effect respectively, for the month of April, 2018. The satellite data has been used to cover the larger geographical area while field observations were taken for simultaneous and daily temperature measurements for different land use types. The significant influence of land use/land cover (LULC) patterns on UHI effect was analyzed using normalized built-up and vegetation indices (NDBI, NDVI) that were derived from remote sensing satellite data. The statistical analysis carried out for land surface temperature (LST) and LULC indicators displayed negative correlation for LST and NDVI while NDBI and LST exhibited positive correlation depicting attenuation in UHI effect by abundant vegetation. The comparison of remote sensing and in-situ observations were also carried out in the study. The research concluded in finding both nocturnal and daytime UHI effect based on diurnal air temperature observations. The study recommends the urgent need to explore and impose effective UHI mitigation measures for the sustainable urban growth.