• Title/Summary/Keyword: Local asymptotic stability

Search Result 21, Processing Time 0.014 seconds

DRINKING AS AN EPIDEMIC: A MATHEMATICAL MODEL WITH DYNAMIC BEHAVIOUR

  • Sharma, Swarnali;Samanta, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.1-25
    • /
    • 2013
  • In this paper we have developed a mathematical model of alcohol abuse. It consists of four compartments corresponding to four population classes, namely, moderate and occasional drinkers, heavy drinkers, drinkers in treatment and temporarily recovered class. Basic reproduction number $R_0$ has been determined. Sensitivity analysis of $R_0$ identifies ${\beta}_1$, the transmission coefficient from moderate and occasional drinker to heavy drinker, as the most useful parameter to target for the reduction of $R_0$. The model is locally asymptotically stable at disease free or problem free equilibrium (DFE) $E_0$ when $R_0$ < 1. It is found that, when $R_0$ = 1, a backward bifurcation can occur and when $R_0$ > 1, the endemic equilibrium $E^*$ becomes stable. Further analysis gives the global asymptotic stability of DFE. Our aim of this analysis is to identify the parameters of interest for further study with a view for informing and assisting policy-makers in targeting prevention and treatment resources for maximum effectiveness.