
J. Appl. Math. & Informatics Vol. 31(2013), No. 1 - 2, pp. 1 - 25
Website: http://www.kcam.biz

DRINKING AS AN EPIDEMIC: A MATHEMATICAL MODEL

WITH DYNAMIC BEHAVIOUR

SWARNALI SHARMA AND G. P. SAMANTA∗

Abstract. In this paper we have developed a mathematical model of al-
cohol abuse. It consists of four compartments corresponding to four pop-

ulation classes, namely, moderate and occasional drinkers, heavy drinkers,
drinkers in treatment and temporarily recovered class. Basic reproduc-
tion number R0 has been determined. Sensitivity analysis of R0 identifies
β1, the transmission coefficient from moderate and occasional drinker to

heavy drinker, as the most useful parameter to target for the reduction of
R0. The model is locally asymptotically stable at disease free or problem
free equilibrium (DFE) E0 when R0 < 1. It is found that, when R0 = 1, a
backward bifurcation can occur and when R0 > 1, the endemic equilibrium

E∗ becomes stable. Further analysis gives the global asymptotic stability
of DFE. Our aim of this analysis is to identify the parameters of interest
for further study with a view for informing and assisting policy-makers in
targeting prevention and treatment resources for maximum effectiveness.

AMS Mathematics Subject Classification : 92D25.
Key words and phrases : Alcohol epidemic, Basic reproduction number,
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1. Introduction

Alcohol abuse is a disease that is characterized by the sufferer having a pattern
of drinking excessively despite the negative effects of alcohol on the individual’s
work, health, educational and social life. The National Institute on Alcohol
Abuse and Alcoholism [23,24] estimates that 18 million Americans suffer from
alcohol abuse or dependence. Alcohol related problems cost the United States
(U.S.) nearly $185 billion annually while alcohol abuse was responsible for nearly
80,000 fatalities per year during 2001-2005 and it is now the third leading cause of
death in the U.S. [9,10,11,12,15,21,27]. The World Health Organization (WHO)
estimates that there are about 2 billion people worldwide who consume alcoholic
beverages and 76.3 million with diagnosable alcohol use disorders. Alcohol abuse
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affects about 20% of men and 10% of women in the U.S., most beginning by their
mid teens [9,10,11,12,15,27,37]. Overall consumption of alcohol in the home
(which was rising faster than outside the home) in the latest years [25] is given
below:

Alcohol consumption has health and social consequences via intoxication (drunk-
enness), alcohol dependence and other biochemical effects of alcohol. Overall
there is a casual relationship between alcohol consumption and more than 60
types of diseases and injury. Alcohol is estimated to cause about 20-30% of
esophageal cancer, liver cancer, cirrhosis of the liver, homicide, epileptic seizures
and motor vehicle accidents worldwide (WHO,2002). Alcohol is involved in
nearly half of all violent deaths involving teens. Prevention and control efforts
that include treatment and education programmes that target specific popula-
tions including children or adolescents [9,10,11,12] are in need of improvement.
Among the many problems confronting these programmes are the very high
rates of relapse after treatment that are observed. Up to 70% of treated alcohol
abusers relapse after treatment [9,10,11,12,27,28]. Developing comprehensive,
effective and sustainable strategies of prevention and management of alcohol
abuse requires a multi-sectoral approach, involving health care professionals,
policy makers, psychiatrists and researchers. The two major forms of interven-
tion include: (i) prevention initiation into alcohol abuse and (ii) rehabilitation
of alcohol abusers. Mathematical studies can be particularly effective as guides
to the evaluation, testing and implementation strategies over short or long time
scales. This is particularly true in the study of chronic relapsing diseases such
as alcohol addiction. While social problems such as alcohol and drug use have
been referred to in terms of epidemics, little has been published on Mathematical
Modelling methods to such problems while there are many mathematical models
for other epidemic problems [3,5,13,16,17,18,19,29,31,33].

Two very interesting models have recently been proposed. One for treating
heroin users proposed by White and Comiskey [38], and a similar one for those
with alcohol problems proposed by Sánchez et. al. [32]. Both models divide
the mathematical problem into three classes, namely susceptible, heroin users
or alcoholics and heroin users or alcoholics undergoing treatment. In fact, the
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two types of model are very similar. The one of Sánchez et. al. [32] defers from
that of White and Comiskey [38] only in that, she assumes the same death/
removal rate for each of the three classes, whereas White and Comiskey [38]
correctly allow the drug users and those in treatment to have enhanced death
rates. After that the heroin epidemic model of White and Comiskey [38] was
revisited and modified by many researchers like Mulone and Straughan [22], Liu
and Zhang [20], Nyabadza and Hove-Musekwa [26], Samanta [30] etc. There
are some discussions [4,14] based on the model of Sánchez et. al. [32]. There
are also many useful mathematical epidemic models which have generated useful
insights about the role of behaviour on the transmission dynamics of sexually
transmitted diseases like gonorrhea [7,18] or HIV [33], about the intensity and
frequency of travel on the spread of communicable diseases such as SARS [13]
etc.

In this paper, we have modified the alcohol abuse model proposed by Sánchez
et. al. [32]. We have divided the mathematical problem into four classes, namely,
moderate and occasional drinkers, heavy drinkers, drinkers in treatment and
temporarily recovered class. Next we have found the basic reproduction number
R0 [34,35]. Then the stability analysis of the model is made using the basic
reproduction number. We have found that the model is locally asymptotically
stable at disease free equilibrium E0 when R0 < 1. When R0 = 1, a backward
bifurcation can occur although R0 may be less than 1, an endemic equilibrium
exists. This case shows that it is not enough to only reduce R0 to less than
one to eliminate the problem and that when R0 crosses unity, hysteresis takes
place. When R0 > 1 endemic equilibrium exists and becomes stable. Next we
have found the conditions of global asymptotic stability of E0 and the conditions
of local asymptotic stability of E∗ by Routh-Hurwitz criterion. Next we have
illustrated some of the key findings through numerical simulations followed by
conclusions. Our aim of introducing this four compartmental alcohol abuse
model is to identify the parameters of interest for further study, with a view
for informing and assisting policy-makers in targeting prevention and treatment
resources for maximum effectiveness.

2. Mathematical Model

In this section we formulate a mathematical model of alcohol abuse. The
adult human population is divided into four different classes, namely, moder-
ate and occasional drinkers with frequency S(t), heavy drinkers with frequency
D(t), drinkers in treatment with frequency T (t), temporarily recovered class
with frequency R(t) at time t.

We diagrammatically represent the flow of individuals from one class to the
other in figure below.
The model can be presented by the following set of ordinary differential equa-
tions:
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dS

dt
= Λ− β1S(t)

D(t)

N
− µS(t) + β3R(t)

S(t)

N
dD

dt
= β1S(t)

D(t)

N
+ β2T (t)

D(t)

N
− (µ+ δ1 + ϕ)D(t)

dT

dt
= ϕD(t)− β2T (t)

D(t)

N
− (µ+ δ2 + σ)T (t)

dR

dt
= σT (t)− µR(t)− β3R(t)

S(t)

N

(1)

with initial densities

S(0) > 0, D(0) ≥ 0, T (0) ≥ 0, R(0) ≥ 0. (2)

Fig.1. Transfer diagram of the alcohol abuse model
The model parameters are described below:

Λ : Recruitment rate of moderate and occasional drinkers,
β1 : The transmission coefficient from moderate and occasional drinkers to

heavy drinkers,
β2 : The transmission coefficient from drinker in treatment to heavy drinker,
β3 : The transmission coefficient from recovered class to moderate and occa-

sional drinkers,
µ : Natural death rate of population,
δ1 : Drinking related death rate of heavy drinkers,
δ2 : Drinking related death rate of drinkers in treatment,
ϕ : The proportion of drinkers who enter treatment,
σ : Recovery rate of drinkers in treatment.
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Clearly the model involves certain assumptions. These consist of the following:
(i) The population we are studying is isolated and closed. This results in the

total population size remaining constant. Every number of the population can
be assigned to one of the subgroups and these subgroups are mutually exclusive.
This means that N = S(t) +D(t) + T (t) +R(t), where N is the total size of the
population,i.e., Λ = µS + (µ + δ1)D + (µ + δ2)T + µR, i.e., the population is
assumed to be of constant size within the modelling time.

(ii) All members of the population mix homogeneously, so each individual has
an equal chance of becoming a heavy drinker.

(iii) The heavy drinking is passed to moderate and occasional drinkers by
adequate contact with Heavy drinkers not in treatment.

(iv) Heavy drinkers not in treatment are infectious to moderate and occasional
drinkers and to drinkers in treatment.

(v) Drinkers in treatment are not infectious to moderate and occasional
drinkers.

(vi) The drinkers in treatment most commonly relapse due to contact with
heavy drinkers who are not in treatment.

(vii) Those who stop drinking alcohol enter to the temporarily recovered class
and one part of which relapse to the moderate and occasional drinkers’ class.

(viii) The population in temporarily recovered class relapse due to the contact
with moderate and occasional drinkers.

3. Basic Properties

3.1. Invariant Region

Theorem 1. The feasible region G defined by

G = {(S(t), D(t), T (t), R(t)) ∈ R4
+ : 0 < N ≤ Λ

µ
}

with initial conditions S(0) > 0, D(0) ≥ 0, T (0) ≥ 0, R(0) ≥ 0, is positively
invariant.

Proof. Adding the equations of the system (1) we obtain

dN

dt
= Λ− µN − δ1D(t)− δ2T (t)

≤ Λ− µN
(3)

The solution N(t) of the differential equation (3) has the following property,

0 ≤ N(t) ≤ N(0)e−µt +
Λ

µ
(1− e−µt)

where N(0) represents the sum of the initial values of the variables. As
t → ∞, 0 ≤ N ≤ Λ

µ . So if N(0) ≤ Λ
µ then limt→∞ N(t) ≤ Λ

µ . This means that Λ
µ

is the upper bound ofN. On the other hand, ifN(0) > Λ
µ , thenN(t) will decrease
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to Λ
µ . This means that if N(0) > Λ

µ , then the solution (S(t), D(t), T (t), R(t)) en-

ters G or approach it asymptotically. Hence it is positively invariant under the
flow induced by the system (1). Thus in G, the model (1) is well-posed epidemi-
ologically and mathematically. Hence it is sufficient to study the dynamics of
the model in G. �
3.2. Positivity of Solutions

Theorem 2. Given the initial conditions of system (1) are S(0) > 0, D(0) ≥
0, T (0) ≥ 0 and R(0) ≥ 0. S(t), D(t), T (t), R(t) are positive for all t ≥ t̄, where
t̄ = inf{t > 0 : S(t) > 0, D(t) > 0, T (t) > 0, R(t) > 0}.

Proof. Here

t̄ = inf{t > 0 : S(t) > 0, D(t) > 0, T (t) > 0, R(t) > 0}.
Thus t̄ > 0 and it follows from the 1st equation of the system (1) that,

dS

dt
= Λ−

[
β1

D(t)

N
+ µ− β3

R(t)

N

]
S(t).

We thus have,

d

dt

[
S(t) exp

{
µt+

1

N

∫ t

0

(β1D(s)− β3R(s))ds

}]
= Λexp

{
µt+

1

N

∫ t

0

(β1D(s)− β3R(s))ds

}
.

Hence

S(t) exp

{
µt+

1

N

∫ t

0

(β1D(s)− β3R(s))ds

}
−S(t̄) exp

{
µt̄+

1

N

∫ t̄

0

(β1D(s)− β3R(s))ds

}
=

∫ t

t̄

Λexp

{
µt+

1

N

∫ t

0

(β1D(ω)− β3R(ω))dω

}
dt,

so that

S(t) = S(t̄) exp

[
−
{
µ(t− t̄) +

1

N

∫ t

t̄

(β1D(s)− β3R(s))ds

}]
+exp

[
−
{
µt+

1

N

∫ t

0

(β1D(s)− β3R(s))ds

}]
[∫ t

t̄

Λexp

{
µt+

1

N

∫ t

0

(β1D(ω)− β3R(ω))dω

}
dt

]
> 0.

From the 2nd equation of (1), we have

dD

dt
≥ −(µ+ δ1 + ϕ)D(t)

⇒ D(t) ≥ D(t̄) exp[−(µ+ δ1 + ϕ)(t− t̄)] > 0.
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Similarly, from the 3rd equation of (1), we have

dT

dt
≥ −

[
β2

D(t)

N
+ (µ+ δ2 + σ)

]
T (t)

⇒ T (t) ≥ T (t̄) exp

[
−
{
(µ+ δ2 + σ)(t− t̄) +

1

N

∫ t

t̄

β2D(s)ds

}]
> 0.

Similarly, from the 4th equation of (1), we have

dR

dt
≥ −

[
µ+ β3

S(t)

N

]
R(t)

⇒ R(t) ≥ R(t̄) exp

[
−
{
µ(t− t̄) +

1

N

∫ t

t̄

β3S(s)ds

}]
> 0.

Therefore, we can see that S(t) > 0, D(t) > 0, T (t) > 0, R(t) > 0, ∀t ≥ t̄ > 0.
This completes the proof. �

4. The Basic Reproduction Number R0

Basic reproduction number R0 is defined as the number of heavy drinkers pro-
duced when a single drinker is introduced into moderate and occasional drinkers’
population [34,35]. In this model, the basic reproduction number is the transmis-
sion coefficient from moderate and occasional drinker to heavy drinker divided
by the sum of the natural death rate of the population, the drinking related
death rate of heavy drinkers who are not in treatment and the proportion of
individuals who enter treatment, i.e.,

R0 =
β1

µ+ δ1 + ϕ
. (4)

5. Sensitivity Analysis of R0

To examine the sensitivity of R0 to each of its parameters, following Arriola
and Hyman [1], the normalized forward sensitivity index with respect to each of
the parameters is calculated.

Aβ1 =
∂R0

R0

∂β1

β1

=
β1

R0

∂R0

∂β1
= β1

(
µ+ δ1 + ϕ

β1

)(
1

µ+ δ1 + ϕ

)
= 1 (5)

Aµ =
∂R0

R0

∂µ
µ

=
µ

R0

∂R0

∂µ
=| −µ

µ+ δ1 + ϕ
|< 1,

Aδ1 =
∂R0

R0

∂δ1
δ1

=
δ1
R0

∂R0

∂δ1
=| −δ1

µ+ δ1 + ϕ
|< 1.
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Aϕ =
∂R0

R0

∂ϕ
ϕ

=
ϕ

R0

∂R0

∂ϕ
=| −ϕ

µ+ δ1 + ϕ
|< 1,

We conclude that the basic reproduction number (R0) is most sensitive to
changes in β1. An increase in β1 will cause an increase in R0 with same pro-
portion and a decrease in β1 will cause a decrease in R0 in same proportion. µ,
δ1 and ϕ have an inversely proportional relationship with R0, so an increase in
any of them will bring about a decrease in R0, however, the size of the decrease
will be proportionally smaller. Recall that µ is the natural death rate of the
population and δ1 is the drinking related death rate of the heavy drinkers not
in treatment. It is clear that increase in either of these rates is neither ethi-
cal nor practical. Thus we choose to focus on one of two parameters: either
ϕ, the proportion of drinkers who enter treatment or β1,the transmission rate
from moderate and occasional drinker to heavy drinker. Given R0’s sensitivity
to β1 and in the knowledge that a treatment cycle exists (individuals who enter
treatment are likely to relapse and re-enter treatment), it seems sensible to focus
efforts on the reduction of β1. In other words, this sensitivity analysis tells us
that prevention is better than cure. Efforts to increase prevention are more
effective in controlling the spread of habitual drinkers than efforts to increase
the numbers of individuals accessing treatment.

6. Stability of Drinking Free or Problem Free Equilibrium, E0 when
R0 < 1

We now use R0 to determine the existence of equilibria for the system.In this
section we will study the local stability behavior of the model system (1) at the
drug free equilibrium (DFE) E0(

Λ
µ , 0, 0, 0).

Now, the variational matrix of system (1) at E0(
Λ
µ , 0, 0, 0) is given by

V (E0) =


−µ −β1 0 β3

0 β1 − (µ+ δ1 + ϕ) 0 0
0 ϕ −(µ+ δ2 + σ) 0
0 0 σ −(µ+ β3)


Therefore, eigen values of the characteristic equation of V (E0) are

λ1 = −µ, λ2 = β1 − (µ+ δ1 + ϕ), λ3 = −(µ+ σ + δ2), λ4 = −(µ+ β3).
Here, λ1, λ3 and λ4 are clearly real and negative. Also as R0 < 1, then

β1 < µ+ δ1 + ϕ

and therefore λ2 is also real and negative. Therefore the system (1) shows local
asymptotic stability at E0(

Λ
µ , 0, 0, 0). So, we arrive to the following result:

Theorem 3. The problem free equilibrium E0 of the model system (1) is locally
asymptotically stable if R0 < 1.
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7. Analysis at R0 = 1

In this section, we determine the stability of heavy drinking persistent equi-
librium or problem persistent equilibrium and investigate the possibility of oc-
curring backward bifurcation [2,16,33,34,35,36,39] due to existence of multiple
equilibrium. To analyze it for the system (1), we use the center manifold theory
[6]. To apply this method, we first change the variables of the model equation
(1) so that S = x1, D = x2, T = x3, R = x4 with dx1

dt = f1,
dx2

dt = f2,
dx3

dt =

f3,
dx4

dt = f4.

Thus system (1) becomes,

f1 = Λ− β1x1x2

N
− µx1 +

β3x4x1

N

f2 =
β1x1x2

N
+

β2x3x2

N
− (µ+ δ1 + ϕ)x2

f3 = ϕx2 −
β2x3x2

N
− (µ+ δ2 + σ)x3

f4 = σx3 − µx4 −
β3x4x1

N

(6)

We choose β∗
1 = β1 as the bifurcation parameter,particularly as it has been

shown in equation (5) that R0 is more sensitive to change in β1 than in its other
parameters. If we consider R0 = 1, then we obtain,

β∗
1 = µ+ δ1 + ϕ. (7)

Now, the Jacobian of the linearized system (6) using identity (7) at problem free
equilibrium E0 when β∗

1 = β1 is given by,

J (β∗
1) =


−µ −β∗

1 0 β3

0 0 0 0
0 ϕ −(µ+ δ2 + σ) 0
0 0 σ −(µ+ β3)

 (8)

The matrix (8) has eigenvalues (0,−µ,−(µ+ δ2 + σ),−(µ+ β3))
T , which meets

the requirement of simple zero eigenvalue and the others having negative real
part. We can thus use the center manifold theory [6] to analyze the dynamics
of system (6). The right eigenvector associated with zero eigenvalue is given by,
ω = (ω1, ω2, ω3, ω4)

T , where
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ω1 =
1

µ

{
β3 −

β∗
1(µ+ δ2 + σ)(µ+ β3)

ϕσ

}
ω4

ω2 =
(µ+ δ2 + σ)(µ+ β3)

ϕσ
ω4

ω3 =
(µ+ β3)

σ
ω4

ω4 = 1

with ω4 free. Further, J(β
∗
1) has a corresponding left eigen vector ν = (ν1, ν2, ν3, ν4),

where

ν1 = 0

ν2 = 1

ν3 = 0

ν4 = 0

with ν2 free. In order to establish the local stability of E∗, we use the following
theorem.

Theorem 4 ([8]). Consider the following general system of ordinary differential
equations with a parameter ϕ,

dx

dt
= f(x, ϕ), f : Rn ×R → R and f ∈ C2(Rn ×R), (9)

where 0 is an equilibrium of the system that is f(0, ϕ) = 0, ∀ϕ and assume:

A1. A = Dxf(0, 0) = ( ∂fi
∂xj

(0, 0)) is linearization matrix of the system (9) around

the equilibrium 0 with ϕ evaluated at 0. Zero is a simple eigenvalue of A and all
other eigenvalues of A have negative real parts;
A2. Matrix A has a right eigenvector u and a left eigenvector ν corresponding
to the zero eigenvalue.

Let fk be the k-th component of f and

a =
n∑

k,i,j=1

νkuiuj
∂2fk

∂xi∂xj
(0, 0),

b =
n∑

k,j=1

νkui
∂2fk
∂xi∂ϕ

(0, 0).

(10)
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The local dynamics of (9) around 0 are totally governed by a and b.

(i) a, b > 0. When ϕ < 0 with | ϕ |≪ 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < ϕ ≪ 1, 0 is unstable and
there exists a negative and locally asymptotically stable equilibrium,

(ii) a < 0, b < 0. When ϕ < 0 with | ϕ |≪ 1, 0 is unstable; when 0 < ϕ ≪ 1, 0
is locally asymptotically stable, and there exists a positive unstable equilibrium,

(iii) a > 0, b < 0. When ϕ < 0 with | ϕ |≪ 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when 0 < ϕ ≪ 1, 0 is stable,
and a positive unstable equilibrium appears,

(iv) a < 0, b > 0. When ϕ changes from negative to positive, 0 changes its
stability from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

The computation of a and b are necessary to apply the Theorem 1.
In particular, since ν1 = ν3 = ν4 = 0,

a = ν2

4∑
i,j=1

ωiωj
∂2f2

∂xi∂xj
(0, 0)

and b = ν2

4∑
i=1

ωi
∂2f2

∂xi∂β1
(0, 0)

For the system (6), the associated non-zero partial derivatives at the problem
free equilibrium are given by:

∂2f2
∂x1∂x2

=
∂2f2

∂x2∂x1
=

µ(µ+ δ1 + ϕ)

Λ
,

∂2f2
∂x2∂x3

=
∂2f2

∂x3∂x2
=

β2µ

Λ
,

∂2f2
∂x2∂β1

= 1.

It thus follows that,

a =
2µω2

Λ
(X − Γ), (11)

where

X =
β3

µ
(µ+ δ1 + ϕ) +

β2

σ
(µ+ β3), (11a)

Γ =
(µ+ δ1 + ϕ)2(µ+ δ2 + σ)(µ+ β3)

ϕσµ
, (11b)
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and b = ω2 > 0. (11c)

Hence the sign of a depends on the values of X and Γ, so that if X > Γ, then
a > 0 and if X < Γ, then a < 0 while b > 0 always. Thus, we have the following
result:
Theorem 5. If X > Γ, then the system (1) has a backward bifurcation at
R0 = 1, otherwise if X < Γ, then it undergoes forward bifurcation and the
endemic equilibrium is locally asymptotically stable for R0 > 1, but close to one.

8. Existence of Endemic Equilibrium E∗(S∗, D∗, T ∗, R∗) when R0 > 1

In this section, we analyze the existence of non-trivial endemic equilibrium
of system (1). At an endemic equilibrium, disease is present and the followings
hold:

S > 0, D > 0, T > 0, R > 0,

dS

dt
=

dD

dt
=

dT

dt
=

dR

dt
= 0.

Solving the equations of system (1) at equilibrium state we get,

S∗ =
N{b1(b2 + β2D

∗)− β2ϕD
∗}

β1(b2 + β2D∗)
,

=
N{b1b2 + (µ+ δ1)β2D

∗}
β1(b2 + β2D∗)

,

T ∗ =
NϕD∗

(b2 + β2D∗)
,

R∗ =
β1NσϕD∗

µβ1(b2 + β2D∗) + β3{b1(b2 + β2D∗)− β2ϕD∗}
,

=
β1NσϕD∗

µβ1(b2 + β2D∗) + β3{b1b2 + (µ+ δ1)β2D∗}
,

where
b1 = µ+ δ1 + ϕ,
b2 = N(µ+ δ2 + σ).

Now, putting the values of S∗, T ∗, R∗ into the first equation of (1) and simplifying
we obtain,

a1(D
∗)3 + a2(D

∗)2 + a3D
∗ + a4 = 0, (12)

where
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a1 = (b1 − ϕ)β1β2{β3ϕ− β2(µβ1 + b1β3)},

a2 = (b1 − ϕ)β2{(µβ1 + b1β3)(β2µN − b2β1)− β3Nϕ(β2µ+ β1σ)}
+β1β2(b1b2 − Λβ2){β3ϕ− (µβ1 + b1β3)},

a3 = (µβ1 + b1β3){2Λb2β1β2 − b1b
2
2β1 + b1b2µNβ2 + (b1 − ϕ)b2β2µN}

−b2β3(β1β2Λϕ+ b1β2µN + b1β1σϕN},

a4 = b22(µβ1 + b1β3)(β1Λ + b1µN).

Obviously a4 is positive. However, the signs of a1, a2, a3 are not obvious al-
though it is known that β1 > µ + δ1 + ϕ as R0 > 1. Now using Descartes’ rule
of signs in equation (12) we obtain:

(i) if a1 > 0, a2 > 0, a3 > 0, then there is no change of sign, so there exists no
positive root of equation (12),
(ii) if a1 < 0, a2 > 0, a3 > 0, there exists only one positive root of equation (12),
(iii) if a1 < 0, a2 < 0, a3 > 0, there exists only one positive root of equation (12),
(iv) if a1 < 0, a2 < 0, a3 < 0, there exists only one positive root of equation (12),
(v) if a1 < 0, a2 > 0, a3 < 0, there exists three or one positive root of equation (12),
(vi) if a1 > 0, a2 > 0, a3 < 0, there exists two or no positive root of equation (12),
(vii) if a1 > 0, a2 < 0, a3 < 0, there exists two or no positive root of equation (12),
(viii) if a1 > 0, a2 < 0, a3 > 0, there exists two or no positive root of equation (12).

Therefore, if a1 is negative, then there exists at least one positive value of D∗,
i.e., at least one non-trivial endemic equilibrium.

Summarizing the previous discussions we come to the following result:

Theorem 6. If a1 in equation (12) is negative, then there exists at least one
non-trivial endemic equilibrium of the system (1).
Observation: If we take β2 = 0, then

a1 = 0,
a2 = −β1β3Nϕσ < 0,
a3 = −b1b

2
2β1(µβ1 + b1β3)− b1b2β1β3Nϕσ < 0,

and a4 is always positive.

Then the equation (12) becomes,

a2(D
∗)2 + a3D

∗ + a4 = 0

where a2 < 0, a3 < 0 and a4 > 0. So there is only one change in sign. Then by
Descartes’ rule of signs, there exists only one positive root of the above equation,
which is given by

D∗ =
−a3 − (a23 − 4a2a4)

1
2

2a2
.
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This implies that there is a unique endemic equilibrium point of the system (1)
when β2 = 0. Therefore in this case there is no existence of backward bifurcation
as there is a unique endemic equilibrium of the system (1) when β2 = 0.

Therefore, we can conclude that the backward bifurcation occurs because
of the insufficient capacity for treatment policies. As a result the drinkers in
treatment come to the direct contact of heavy drinkers and they re-enter into
the heavy drinkers class.

9. Global Stability Analysis of Disease Free or Problem Free
Equilibrium E0

First, let us state the Poincaré-Bendixson Theorem [19]:
Statement: Consider an autonomous system of differential equations of the
form

dx

dt
= F (x, y),

dy

dt
= G(x, y),

where F and G have continuous first order partial derivatives and the solutions
of the system exists for all t. Suppose that a positive semi-orbit C+ of this
system enters and does not leave some closed bounded domain D and that there
are no equilibrium points in D. Then ω(C+) is a periodic orbit.
When system (1) has no endemic equilibrium we have the following results on
the global stability of E0:

Theorem 7. If R0 < 1 and a < 0 in (11), the disease free or problem free
equilibrium E0 is globally asymptotically stable.

Proof. As G = {(S(t), D(t), T (t), R(t)) ∈ R4
+ : 0 < N ≤ Λ

µ } is an invariant set

of system (1), it attracts all the positive solutions of system (1) in R4
+. Since

system (1) has no endemic equilibrium, but has only problem free equilibrium
when R0 < 1 and a < 0 where a is given in (11), it follows from the Poincare-
Bendixon’s theorem that no periodic solution exist in G. Since G is a bounded
positively invariant region of system (1) and E0 is the only equilibrium point in
G, the ω-limit set of every solution starting in G is nothing but E0. Hence the
stable problem free equilibrium E0 is globally asymptotically stable. �

10. Stability Analysis of Endemic Equilibrium E∗(S∗, D∗, T ∗, R∗)

using Routh-Hurwitz Criterion
The variational matrix of system (1) at E∗ is given by,

V (E∗) =


m11 m12 0 m14

m21 0 m23 0
0 m32 m33 0

m41 0 m43 m44

 (13)

where,

m11 = −β1D
∗

N
− µ+

β3R
∗

N
, m12 = −β1S

∗

N
, m14 =

β3S
∗

N
,
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m21 =
β1D

∗

N
, m23 =

β2D
∗

N
,

m32 = ϕ− β2T
∗

N
, m33 = −β2D

∗

N
− (µ+ δ2 + σ),

m41 = −β3R
∗

N
, m43 = σ, m44 = −(µ+

β3S
∗

N
).

Therefore, the characteristic equation of V (E∗) is,

λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0, (14)

where,

A1 = −m11 −m33 −m44,
A2 = m11m33 +m11m44 +m33m44 −m12m21 −m23m32 −m14m41,
A3 = m12m21m33 +m12m21m44 +m11m23m32 +m23m32m44

+m14m41m33 −m11m33m44,
A4 = m14m41m23m32 −m12m21m33m44 −m11m23m32m44

−m21m14m32m43.

By the Routh-Hurwitz criterion [19], it follows that, all eigenvalues of the char-
acteristic equation (14) has negative real part if and only if

A1 > 0, A4 > 0, B = A1A2 −A3 > 0, BA3 −A2
1A4 > 0. (15)

Theorem 8. E∗ is locally asymptotically stable if and only if the above inequal-
ities of (15) are satisfied.

11. Numerical Simulation

Analytical studies can never be completed without numerical verification of
the results. In this section we present computer simulation of some solutions of
the system (1). Beside verification of our analytical findings, these numerical
solutions are very important from practical point of view.

We first consider the case when R0 = 0.538462 < 1 using the parameter
values given in Table 1. For different initial conditions the dynamics of the
model is presented in fig.2. The figure shows that only moderate and occasional
drinkers’ population exists (S = 1.6) and the populations of heavy drinkers,
drinkers in treatment and temporarily recovered population declines to zero
(D = 0, T = 0, R = 0), i.e., approaches the disease free or problem free equi-
librium (DFE). It shows that DFE is locally asymptotically stable whenever
R0 < 1. This numerical verification supports the result stated in Theorem 3
(art.6) on the stability of DFE.

Further using the parameter values given in Table 2, we consider the case
when R0 = 1.25 > 1. For different initial conditions the dynamics of the model
is presented in fig.3. The figure shows that moderate and occasional drinkers’
population, heavy drinkers, drinkers in treatment and temporarily recovered
population all exist[(S∗, D∗, T ∗, R∗) = (11.4913, 0.2395, 0.7492, 2.2854)], i.e., the
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population of drinkers tends to drinking persistent equilibrium (DPE) or endemic
equilibrium when R0 > 1. This indicates that irrespective of the initial conditions
the population of heavy drinkers eventually settles at endemic equilibrium with
increasing time and the problem free equilibrium became unstable when R0 > 1,
which supports our analytical results. In this case X = 0.329 and Γ = 1.36102,
i.e., X < Γ, so a < 0 (see 11,11a,11b, art.7). Therefore, it also shows the forward
bifurcation of system (1) which is good agreement with Theorem 5.

Further using the parameter values given in Table 3, we consider the case
when R0 = 0.75 < 1. For different initial conditions the dynamics of the model
is presented in fig.4. The figure shows that in this case, there exists three equilib-
ria of the system (1), among them problem free equilibrium E0(36, 0, 0, 0) and
an endemic equilibrium E∗(17.5685, 5.7595, 1.9980, 0.2130) are stable and the
other endemic equilibrium E1(25.0263, 2.8633, 1.7897, 0.1644) is unstable. Here
X = 13.015 and Γ = 8.32, i.e., X > Γ, so a > 0 (see 11,11a,11b, art.7). There-
fore, it also shows the backward bifurcation of system (1) which is also in good
agreement with Theorem 5.

Table 1
Parameter Values Source
Λ 0.4 Estimated
β1 0.7 Estimated
β2 0.3 Estimated
β3 0.1 Estimated
µ 0.25 Estimated
σ 0.09 Estimated
ϕ 0.7 Estimated
δ1 0.35 Estimated
δ2 0.3 Estimated
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Fig.2a. Time series plot of the moderate and occasional drinkers for R0 =
0.538462 < 1 with various initial conditions, parameter values are given in Table
1.
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Fig.2b. Time series plot of heavy drinkers for R0 = 0.538462 < 1 with various
initial conditions, parameter values are given in Table 1.
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Fig.2c. Time series plot of drinkers in treatment for R0 = 0.538462 < 1 with
various initial conditions, parameter values are given in Table 1.
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Fig.2d. Time series plot of temporarily recovered class for R0 = 0.538462 < 1
with various initial conditions, parameter values are given in Table 1.
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Table 2
Parameter Values Source
Λ 0.4 Estimated
β1 0.7 Estimated
β2 0.3 Estimated
β3 0.01 Estimated
µ 0.025 Estimated
σ 0.1 Estimated
ϕ 0.5 Estimated
δ1 0.035 Estimated
δ2 0.03 Estimated
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Fig.3a. Time series plot of moderate and occasional drinkers for R0 = 1.25 > 1
with various initial conditions, parameter values are given in Table 2.
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Fig.3b. Time series plot of heavy drinkers for R0 = 1.25 > 1 with various initial
conditions, parameter values are given in Table 2.
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Fig.3c. Time series plot of the drinkers in treatment for R0 = 1.25 > 1 with
various initial conditions, parameter values are given in Table 2.
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Fig.3d. Time series plot of temporarily recovered class for R0 = 1.25 > 1 with
various initial conditions, parameter values are given in Table 2.

Table 3
Parameter Values Source
Λ 0.9 Estimated
β1 0.12 Estimated
β2 0.99 Estimated
β3 0.1 Estimated
µ 0.025 Estimated
σ 0.01 Estimated
ϕ 0.1 Estimated
δ1 0.035 Estimated
δ2 0.03 Estimated
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Fig.4a. Time series plot of moderate and occasional drinkers for R0 = 0.75 < 1
with various initial conditions, parameter values are given in Table 3.
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Fig.4b. Time series plot of heavy drinkers for R0 = 0.75 < 1 with various initial
conditions, parameter values are given in Table 3.
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Fig.4c. Time series plot of the drinkers in treatment for R0 = 0.75 < 1 with
various initial conditions, parameter values are given in Table 3.
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Fig.4d. Time series plot of temporarily recovered class for R0 = 0.75 < 1 with
various initial conditions, parameter values are given in Table 3.
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Fig.4e. Moderate and occasional drinkers and heavy drinkers’ S-D plane projec-
tion of the solution for R0 = 0.75 < 1 with various initial conditions, parameter
values are given in Table 3.

12. Conclusions

In this paper, we have developed a mathematical model of alcohol abuse and
introduced a four compartmental model with four population classes, namely,
moderate and occasional drinkers, heavy drinkers, drinkers in treatment and
temporarily recovered class. Here, we have found

R0 =
β1

µ+ δ1 + ϕ

as basic reproduction number of the model system (1). Sensitivity analysis of R0

identifies β1, the transmission coefficient from moderate and occasional drinker
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to heavy drinker, as the most useful parameter to target for the reduction of R0.
Sensitivity analysis tells us that, prevention is better than cure; efforts to
increase prevention are more effective in controlling the spread of habitual drink-
ing than efforts to increase the numbers of drinkers undergoing treatment. The
model (1) is locally asymptotically stable at disease free or problem free equilib-
rium (DFE) E0 when R0 < 1. For the most part, in epidemic models, there are
two distinct bifurcations at R0 = 1 : (i) forward (supercritical) bifurcation and
(ii) backward (subcritical) bifurcation [3,4,15,33,34,37,38,39]. A forward bifurca-
tion happens when R0 crosses unity from below; a small positive asymptotically
stable equilibrium appears and the disease-free equilibrium losses its stability.
On the other hand, a backward bifurcation happens when R0 is less than unity;
a small positive unstable equilibrium appears while the disease-free equilibrium
and a large positive equilibrium are locally asymptotically stable. Epidemiologi-
cally, a backward bifurcation says that, it is not enough to only reduce the basic
reproduction number R0 to less than one to eliminate a disease and that when
R0 crosses unity, hysteresis takes place. In our model system (1), it is found
that, when R0 = 1, a backward bifurcation can occur if X > Γ (see 11a,11b,
art.7) and although R0 may be less than 1, an endemic equilibrium exists. If
this equilibrium is stable, substantial effort may be required to reduce preva-
lence and avoid an endemic. When R0 > 1, analysis produces a cubic equation
in D. The existence of an endemic equilibrium( or endemic equilibria) depends
on the existence of at least one real positive value for D. The stability analysis of
endemic equilibrium produces that, if the Routh-Hurwitz [19] criterion are sat-
isfied the endemic equilibrium E∗ is locally asymptotically stable and if R0 < 1
and X < Γ, the disease-free equilibrium (DFE) E0 is globally asymptotically
stable. Next all our important mathematical findings are numerically verified
using MATLAB. We have numerically verified that, the disease-free equilibrium
E0 is stable when R0 < 1 and when R0 > 1, endemic equilibrium E∗ becomes
stable and disease-free equilibrium E0 becomes unstable and forward bifurcation
occurs for our set of values of parameters. We have also numerically verified the
case when R0 < 1 and disease free equilibrium E0 and an endemic equilibrium
E∗ are stable and other endemic equilibrium E1 is unstable (when backward
bifurcation occurs).

As with many models, the mathematical model presented in this paper should
be treated with circumspection due to the assumptions made and the difficulty
in the estimation of the model parameters. As part of future work to improve
the model in this paper, the model considered here can be refined to incorporate
drinkers who start regular drinking on their own without having contact with
heavy drinkers, age structure and recruitment by drinkers. The model can be
refined to model a specific substance of abuse and be fitted to data. The model
shows backward bifurcation which occurs because of the insufficient capacity for
treatment policies. As a result the drinkers in treatment come to the direct con-
tact of heavy drinkers and they re-enter into the heavy drinkers class. Despite
its shortcomings, the model provides useful insights into the possible impact of



Drinking as an epidemic: a mathematical model with dynamic behaviour 23

rehabilitation and reversion in communities struggling with alcohol abuse. An-
other important effect we want to include in our future work is the male/female
distribution of alcohol abusers. For instance, in the 2005-2006 assessment, the
prevalence rate of alcohol abusers in U.S. shows a big variation between male
and female rates. It is estimated that of the 15.1 million alcohol-abusing individ-
uals in the U.S., approximately 10.5 million are men and 4.6 million are women
[25]. This involves complicated systems and association with the quantitative
drinking research expert group is essential.
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pact of Relative Residence Times, in highly distinct environments, on the distribution of
heavy drinkers, Socio. Econ. Plan. Sci.(In Press).

22. G. Mulone, B. Straughan, A note on heroin epidemics, Mathematical Biosciences 218

(2009) 138-141.
23. National Institute of Alcohol Abuse and Alcoholism (2008) Five Year Strategic Plan.

http://www.niaaa.nih.gov/publications/srtategicplan/NIAAASTRATEGICPLAN.htm.
Cited 29 Apr 2008.

24. National Institute of Alcohol Abuse and Alcoholism (2008) Frequently Asked Questions for
the General Public. http://www.niaaa.nih.gov/FAQs/General-English/default.htm. Cited
29 Apr 2008.

25. NHS Information Centre. http://www.ic.nhs.uk/wefiles/publications. Cited 26 May 2011.
26. F. Nyabadza, S. D. Hove-Musekwa, From heroin epidemics to methamphetamine epi-

demics: Modelling substance abuse in a South African province, Mathematical Biosciences
225 (2010) 132-140.

27. J. Orford, M. Krishnan, M. Balaam, M. Everitt, K. Van der Graaf, University student
drinking: the role of motivational and social factors, Drug-Educ. Prev. Polic. 11 (2004)
407-421.

28. C. Parry, Substance abuse trends in the Western Capes: Summary (25/2/05), Alcohol and

Drug Abuse Research Unit, Medical Research Council, 2005.
29. E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University

Press, Cambridge, 1991.
30. G. P. Samanta, Dynamic behaviiour for a nonautonomous heroin epidemic model with

time delay, J. Appl. Math. Comput. 35 (2009) 161-178.
31. F. Sánchez, Studies in Epidemiology and Social Dynamics, Dissertation, Cornell Univer-

sity, 2006.
32. F. Sánchez, X. Wang, C. Castillo-Cahvez, D. M.Gorman, P.J. Gruenwald, Drinking as

an epidemic: a simple mathematical model with recovery and relapse,In: K. Witkiewitz,
G.A. Marlett,(eds.) Therapist’s Guide to Evidence- Based Relapse Prevention: Practical
Resources for the Mental Health Professional, Academic Press, Burlington (2007) 353-368.

33. O.Sharomi, C.N. Podder, A. B. Gumel, E. H. Elbasha, J. Watmough, Role of incidence
function in vaccine-induced backward bifurcation in some HIV models, Mathematical Bio-
sciences 210 (2007) 436-463.

34. B. Song, Seminar Notes, Backward or Forward at R0 = 1, Mathematical and Theoretical

Biology Institute, Summer, 2005.
35. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission, Mathematical Biosciences 180
(2002) 29-48.

36. W. Wang, Backward bifurcation of an epidemic model with treatment, mathematical Bio-
sciences 201 (2006) 58-71.



Drinking as an epidemic: a mathematical model with dynamic behaviour 25

37. E.R.Weitzman, A. Flokman, K.L.Folkman, H. Weschler, The relationship of alcohol out-
let density to heavy and frequent drinking and drinking related problems among college
students at eight universities, Health Place (2003) 1-6.

38. E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Mathematical
Biosciences 208 (2007) 312-324.

39. X. Zhang, X. Liu, Backward bifurcation of an epidemic model with saturated treatment
function, J. Math. Anal. Appl. 348 (2008) 433-443.

Swarnali Sharma got her MSc in Applied Mathematics from Jadavpur University in 2010.

Her areas of research are Mathematical Ecology and Epidemiology. She is now working
as Junior Research Fellow under the supervision of Dr. G.P. Samanta in Department of
Mathematics, Bengal Engineering and Science University, Shibpur, Howrah, 711103, India.

Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-
711103, India.

e-mail: swarnali.sharma87@gmail.com

G. P. Samanta got his MSc and Ph.D. in Applied Mathematics from Calcutta University

in 1985 and 1991 respectively. He was a Premchand Raychand Scholar of Calcutta University
and received Mouat Medal at the convocation of Calcutta University in 1996. His areas of
research are Mathematical Ecology and Operations Research. He is now working as Professor
of the Department of Mathematics, Bengal Engineering and Science University, Shibpur,

Howrah, 711103, India.

Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-
711103, India.
e-mail: g p samanta@yahoo.co.uk


