• Title/Summary/Keyword: Local anodization

Search Result 6, Processing Time 0.017 seconds

Technological Trends in a local anodization (국부적 양극산화 기술 동향)

  • Kwang-Mo Kang;Sumin Choi;Yoon-Chae Nah
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Anodization is an electrochemical process that electrochemically converts a metal surface into an oxide layer, resulting in enhanced corrosion resistance, wear resistance, and improved aesthetic appearance. Local anodization, also known as selective anodization, is a modified process that enables specific regions or patterns on the metal surface to undergo anodization instead of the entire surface. Several methods have been attempted to produce oxide layers via localized anodic oxidation, such as using a mask or pre-patterned substrate. However, these methods are often intricate, time-consuming, and costly. Conversely, the direct writing or patterning approach is a more straightforward and efficient way to fabricate the oxide layers. This review paper intends to enhance our comprehension of local anodization and its potential applications in various fields, including the development of nanotechnologies. The application of anodization is promising in surface engineering, where the anodic oxide layer serves as a protective coating for metals or modifies the surface properties of materials. Furthermore, anodic oxidation can create micro- and nano-scale patterns on metal surfaces. Overall, the development of efficient and cost-effective anodic oxidation methods is essential for the advancement of various industries and technologies.

Fabrication of Nano-Structures on NiFe Film by Anodization with Atomic Force Microscope

  • Okada, T.;Uchida, H.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.135-138
    • /
    • 2006
  • We studied local anodization on permalloy $(Ni_{80}Fe_{20})$ thin film with an atomic force microscope (AFM), which was performed by applying a voltage between the permalloy sample and conductive AFM tip. Comparing with anodization on Si (100) substrate, nano-structures on the permalloy thin film was fabricated with low processability.In order to improve the processability on the permalloy thin film, we used dot-fabrication method, thatis, a conductive AFM probe was kept at a position on the film during the anodization process.

Thickness Dependence of Size and Arrangement in Anodic TiO2 Nanotubes

  • Kim, Sun-Mi;Lee, Byung-Gun;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3730-3734
    • /
    • 2011
  • The degree of self-assembly and the size variation of nanotubular structures in anodic titanium oxide prepared by the anodization of titanium in ethylene glycol containing 0.25 wt % $NH_4F$ at 40 V were investigated as a function of anodization time. We found that the degree of self-assembly and the size of the nanotubes were strongly dependent on thickness deviation and thus indirectly on anodization time, as the thickness deviation was caused by the dissolution of the topmost tubular structures at local areas during long anodization. A large deviation in thickness led to a large deviation in the size and number of nanotubes per unit area. The dissolution primarily occurred at the bottoms of the nanotubes ($D_{bottom}$) in the initial stage of anodization (up to 6 h), which led to the growth of nanotubes. Dissolution at the tops ($D_{top}$) was accompanied by $D_{bottom}$ after the formed structures contacted the electrolyte after 12 h, generating the thickness deviation. After extremely long anodization (here, 70 h), $D_{top}$ was the dominant mode due to increase in pH, meaning that there was insufficient driving force to overcome the size distribution of nanotubes at the bottom. Thus, the nanotube array became disorder in this regime.

Local Anodization on Si surface Using Scanning Probe Microscope; Effects of Tip Voltage, Deflection Setpoint, and Tip Velocity on Line Height (주사탐침현미경을 이용한 Si 표면 국부 산화피막 형성시 선 높이에 대한 탐침 전위, 편향 셋포인트, 탐침 속도의 영향)

  • Kim Chang-Hwan;Choi Jeong-Woo;Shin Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2006
  • The effects of tip voltage, deflection setpoint, and tip velocity on height of $SiO_2$ line drawn by local anodization on Si wafer using scanning probe microscope were investigated. No local anodization was detected at smaller than -3 V of tip voltage. The line height increased at rate of 0.47 nm/V when the tip voltage is stronger than -3 V at $1{\mu}m/s$ tip velocity. From deflection setpoint, mechanical force between tip and substrate could be calculated and the threshold farce was $12\sim18nN$. The height of anodized $SiO_2$ lines is independent of the magnitude of force above the threshold force. The line height decreased as increasing the tip velocity and limited to 0.7 nm at -5 V tip voltage.

Electrochemical Synthesis of Octahedral Nanostructured PbF2

  • Lee, Joon-Ho;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.463-466
    • /
    • 2011
  • In this work, we investigate anodization of Pb in ethylene glycol containing small amount of $NH_4F$, demonstrating that ${\beta}-PbF_2$ particles with octahedral morphology can be prepared by adjusting the applied potential and anodizing time. FE-SEM images and XRD measurements of anodic nanostructures as a function of anodizing time clearly show that PbO is first formed on Pb. Subsequently, a local dissolution of PbO leads to formation of skeleton structure of PbO, releasing $Pb^{2+}$ ions in the electrolyte. The lead ions can be precipitated on the walls or intersection of the skeleton walls when the concentration of lead ions is saturated. The method described in this article shows the feasibility of formation of metal fluoride crystal by anodization of metal in a fluoride containing solution.

Electrochemical Behavior and Morphology of Anodic Titanium Oxide Films (양극산화에 의한 티타늄 산화피막의 전기화학적 거동과 형상)

  • Byeon K.J.;Kim C.S.;Zhu Xiaolong;Kim K.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.273-277
    • /
    • 2000
  • The galvanostatic anodization of commercially Pure titanium plate (c.p.Ti, grade 2) was investigated in various concentrations of aqueous $H_3PO_4$ from 0.05M to 0.7M. The surfaces of anodic oxide films, formed by the current density in the range between 0.3 and $l.0 A/dm^2$. were analyzed by SEM and XRD. The voltage-time (V-T) curves displayed an initial linear part and a subsequent parabolic part, and the initial slopes increased with an increase in the current density in 0.05M $H_3PO_4$. As the concentration of the electrolyte increased, the V-T corves exhibit no change but the final voltage decreased. The anodic oxide film of titanium developed from fine grains to snowflake-like grains in a layered structure with an increase in the concentration of the electrolyte and current density. Sparking at the interface of the oxide/electrolyte accompanied the local deposition and dissolution of the oxide film through discharging. The crystallinity of the anodic oxide film increased with the anodizing voltage and decreased with an increase in the concentration of the electrolyte.

  • PDF