DOI QR코드

DOI QR Code

Local Anodization on Si surface Using Scanning Probe Microscope; Effects of Tip Voltage, Deflection Setpoint, and Tip Velocity on Line Height

주사탐침현미경을 이용한 Si 표면 국부 산화피막 형성시 선 높이에 대한 탐침 전위, 편향 셋포인트, 탐침 속도의 영향

  • Kim Chang-Hwan (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Choi Jeong-Woo (Department of Chemical & Biomolecular Engineering and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Shin Woon-Sup (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • 김창환 (서강대학교 화학과, 바이오융합기술 협동과정) ;
  • 최정우 (서강대학교 화공생명공학과, 바이오융합기술 협동과정) ;
  • 신운섭 (서강대학교 화학과, 바이오융합기술 협동과정)
  • Published : 2006.05.01

Abstract

The effects of tip voltage, deflection setpoint, and tip velocity on height of $SiO_2$ line drawn by local anodization on Si wafer using scanning probe microscope were investigated. No local anodization was detected at smaller than -3 V of tip voltage. The line height increased at rate of 0.47 nm/V when the tip voltage is stronger than -3 V at $1{\mu}m/s$ tip velocity. From deflection setpoint, mechanical force between tip and substrate could be calculated and the threshold farce was $12\sim18nN$. The height of anodized $SiO_2$ lines is independent of the magnitude of force above the threshold force. The line height decreased as increasing the tip velocity and limited to 0.7 nm at -5 V tip voltage.

본 연구에서는 주사탐침현미경을 이용한 Si 표면의 국부 산화피막 형성에 있어서, 탐침이 움직이면서 생기는 $SiO_2$의 일차원적인 선의 높이가 탐침 전위, deflection setpoint, 탐침 속도에 의해 어떻게 영향을 받는지 고찰해 보았다. -3 V 보다 작은 탐침 전위에서는 국부 산화피막 형성이 관찰되지 않았으며 -3 V 보다 큰 탐침 전위에서는, 탐침 속도가 $1{\mu}m/s$일 때, 1 V씩 증가함에 따라 0.47nm의 비율로 선의 높이가 높아졌다. Deflection setpoint는 탐침이 가하는 기계적인 힘의 표지가 되는데, $12\sim18nN$ 정도의 힘이 가해지지 않으면 국부 산화피막 형성이 관찰되지 않았다. 그 이상의 힘이 가해져야 국부 산화피막 형성이 관찰되는데 이때 선의 높이는 기계적인 힘과 무관하였다. 탐침 속도가 빨라짐에 따라 선의 높이는 낮아졌으나, 탐침 전위가 -5V인 경우, 0.7nm 이하로 낮아지지는 않았다.

Keywords

References

  1. A. A. Tseng, A. Notargiacomo, and T. P. Chen, 'Nanofabrication by scanning probe microscope lithography: A review,' J. Vac. Sci. Technol. B, 23(3), 877 (2005) https://doi.org/10.1116/1.1926293
  2. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennet, 'Modification of hydrogen-passivated silicon by a scanning tunnuling microscope operating in air,' Appl. Phys. Lett., 56(20), 2001 (1990) https://doi.org/10.1063/1.102999
  3. S. C. Minne, H. T. Soh, Ph. Flueckiger, and C. F. Quatc, 'Fabrication of 0.1 ${\mu}m$ metal oxide semiconductor field-effect transistors with the atomic force microscope,' Appl. Phys. Lett., 66(6), 703 (1995) https://doi.org/10.1063/1.114105
  4. P. M. Campbell, E. S. Snow, and P. J. McMarr, 'Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope,' Appl. Phys. Lett., 66(11), 1388 (1995) https://doi.org/10.1063/1.113210
  5. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, 'Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system,' Appl. Phys. Lett., 68(1), 34 (1996)
  6. R. Held, T. Heinzel, P. Studerus, K. Ensslin, and M. Holland, 'Semiconductor quantum point contact fabricated by lithography with an atomic force microscope,' Appl. Phys. Lett., 71(18), 2689 (1997)
  7. T. Yasuda, S. Yamasaki, and S. Gwo, 'Nanoscale selective-area epitaxial growth of Si using an ultrathin $SiO_2/Si_3N_4$ mask patterned by an atomic force microscope,' Appl. Phys. Lett., 77(24), 3917 (2000) https://doi.org/10.1063/1.1331078
  8. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, 'Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography,'' Appl. Phys. Lett., 63(9), 1288 (1993) https://doi.org/10.1063/1.110771
  9. H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, 'Scanning Tunneling Microscope Tip-Induced Anodization for Nanofabrication of Titanium,' J. Phys. Chem., 98(16), 4352 (1994) https://doi.org/10.1021/j100067a023
  10. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, 'Mechanisms of surface anodization produced by scanning probe microscopes,' J. Vac. Sci. Technol. B, 13(6),2805, (1995) https://doi.org/10.1116/1.588218
  11. P. Avouris, T. Hertel, and Richard Martel, 'Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication,' Appl. Phys. Lett., 71(2), 285 (1997) https://doi.org/10.1063/1.119521
  12. T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, 'Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope: Doping dependence and kinetics,' Appl. Phys. Lett., 67(2), 3144 (1995) https://doi.org/10.1063/1.114861
  13. D. Stievenard, P. A. Fontaine, and E. Dubois, 'Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation,' Appl. Phys. Lett., 70(24), 3272 (1997)
  14. J. A. Dagata, T. Inoue, J. Itoh, and Yokoyama, 'Understanding scanned probe oxidation of silicon,' Appl. Phys. Lett., 73(2), 271 (1998)
  15. Y.-R. Ma, C. Yu, Y.-D. Yao, Y. Liou, and S.-F. Lee, 'Tip-induced local anodic oxidation on the native $SiO_2$ layer of Si(111) using an atomic force microscope,' Phys. Rev. B, 64(19), 195324 (2001) https://doi.org/10.1103/PhysRevB.64.195324