• Title/Summary/Keyword: Local and global time series features

Search Result 2, Processing Time 0.019 seconds

Passive sonar signal classification using attention based gated recurrent unit (어텐션 기반 게이트 순환 유닛을 이용한 수동소나 신호분류)

  • Kibae Lee;Guhn Hyeok Ko;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.345-356
    • /
    • 2023
  • Target signal of passive sonar shows narrow band harmonic characteristic with a variation in intensity within a few seconds and long term frequency variation due to the Lloyd's mirror effect. We propose a signal classification algorithm based on Gated Recurrent Unit (GRU) that learns local and global time series features. The algorithm proposed implements a multi layer network using GRU and extracts local and global time series features via dilated connections. We learns attention mechanism to weight time series features and classify passive sonar signals. In experiments using public underwater acoustic data, the proposed network showed superior classification accuracy of 96.50 %. This result is 4.17 % higher classification accuracy compared to existing skip connected GRU network.

Application of Spatial Autocorrelation for the Spatial Distribution Pattern Analysis of Marine Environment - Case of Gwangyang Bay - (해양환경 공간분포 패턴 분석을 위한 공간자기상관 적용 연구 - 광양만을 사례 지역으로 -)

  • Choi, Hyun-Woo;Kim, Kye-Hyun;Lee, Chul-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.60-74
    • /
    • 2007
  • For quantitative analysis of spatio-temporal distribution pattern on marine environment, spatial autocorrelation statistics on the both global and local aspects was applied to the observed data obtained from Gwangyang Bay in South Sea of Korea. Global indexes such as Moran's I and General G were used for understanding environmental distribution pattern in the whole study area. LISAs (local indicators of spatial association) such as Moran's I ($I_i$) and $G_i{^*}$ were considered to find similarity between a target feature and its neighborhood features and to detect hot spot and/or cold spot. Additionally, the significance test on clustered patterns by Z-scores was carried out. Statistical results showed variations of spatial patterns quantitatively in the whole year. Then all of general water quality, nutrients, chlorophyll-a and phytoplankton had strong clustered pattern in summer. When global indexes showed strong clustered pattern, the front region with a negative $I_i$ which means a strong spatial variation was observed. Also, when global indexes showed random pattern, hot spot and/or cold spot were/was found in the small local region with a local index $G_i{^*}$. Therefore, global indexes were useful for observing the strength and time series variations of clustered patterns in the whole study area, and local indexes were useful for tracing the location of hot spot and/or cold spot. Quantification of both spatial distribution pattern and clustering characteristics may play an important role to understand marine environment in depth and to find the reasons for spatial pattern.

  • PDF