Acknowledgement
이 논문은 2023년도 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(20-106-B00-003).
References
- Y. C. Jung, B. U. Kim, S. K. An, W. J. Seong, and K. H. Lee, "An algorithm for submarine passive sonar simulator" (in Korean), J. Acoust. Soc. Kr. 32, 472-483 (2013). https://doi.org/10.7776/ASK.2013.32.6.472
- K. Lee, J. Kim, M. J. Cheong, Y. W. Ryu, J. Bae, and C. H. Lee, "Separation and denoising algorithm of passive sonar target signals in frequency domain" (in Korean), J. IEIE, 55, 88-96 (2018). https://doi.org/10.5573/ieie.2018.55.3.88
- J. K. Ahn, H. D. Cho, D. Shin, T. Kwon, and G. T. Kim, "LOFAR/DEMON grams compression method for passive sonar" (in Korean), J. Acoust. Soc. Kr. 39, 38-46 (2020).
- S. E. Lee, S. B. Hwang, and D. Y. Noh, "A study on the algorithm for underwater target automatic classification using the passive sonar" (in Korean), J. KIMS Technol. 3, 76-84 (2000).
- B. Mishachandar and S. Vairamuthu, "Diverse ocean noise classification using deep learning," Appl. Acoust. 181, 108141 (2021).
- G. Song, X. Guo, W. Wang, Q. Ren, J. Li, and L. Ma, "A machine learning-based underwater noise classification method," Appl. Acoust. 184, 108333 (2021).
- C. Satheesh, S. Kamel, A. Mujeeb, and M. H. Supriya, "Passive sonar target classification using deep generative β-VAE," IEEE Signal Process. Lett. 28, 808-812 (2021). https://doi.org/10.1109/LSP.2021.3071255
- N. H. Bach, L. H. Vu, and V. D. Nguyen, "Classification of surface vehicle propeller cavitation noise using spectrogram processing in combination with convolution neural network," Sensors, 21, 3353 (2021).
- F. Liu, T. Shen, Z. Luo, D. Zhao, and S. Guo, "Underwater target recognition using convolutional recurrent neural networks with 3-D mel-spectrogram and data augmentation," Appl. Acoust. 178, 107989 (2021).
- S. Kim, S. K. Jung, D. Kang, M. Kim, and S. Cho, "Application of the artificial intelligence for automatic detection of shipping noise in shallow-water" (in Korean), J. Acoust. Soc. Kr. 39, 279-285 (2020).
- K. M. Park and D. Kim, "Preprocessing performance of convolutional neural networks according to characteristic of underwater targets" (in Korean), J. Acoust. Soc. Kr. 41, 629-636 (2022).
- A. Sherstinsky, "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network," Physica D: Nonlinear Phenomena, 404, 132306 (2020).
- J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," Proc. NIPS Workshop on Deep Learning, 1-9 (2014).
- X. Zhang, Y. Sun, K. Jiang, C. Li, L. Jiao, and H. Zhou, "Spatial sequential recurrent neural network for yperspectral image classifcation," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 4141-4155 (2018). https://doi.org/10.1109/JSTARS.2018.2844873
- S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, "Classification of ECG arrhythmia using recurrent neural networks," Procedia Computer Science, 132, 1290-1297 (2018). https://doi.org/10.1016/j.procs.2018.05.045
- S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. Witbrock, M. Hasegawa-Johnson, and T. S. Huang, "Dilated recurrent neural networks," Proc. 31st Conf. NIPS, 1-13 (2017).
- S. H. Kang, "A study on the Lloyd's mirror effect on the underwater radiated noise for the underwater vehicle" (in Korean), J. Acoust. Soc. Kr. 40, 314-319 (2021).
- L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (John Wiley & Sons, New Jersey, 1999), Chap. 15.
- D. S. Domingues, S. T. Guijarro, A. C. Lopez, and A. P. Gimenez, "ShipEar: An underwater vessel noise database," Appl. Acoust. 113, 64-69 (2016). https://doi.org/10.1016/j.apacoust.2016.06.008