• 제목/요약/키워드: Local Slope

검색결과 360건 처리시간 0.035초

Analysis on the Geo-reinforced Slope Using Upper Bound Theory (상계해석을 이용한 보강토 사면의 해석)

  • Choi Sang-Ho;Kim Jong-Min;Yu Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • 제20권7호
    • /
    • pp.207-215
    • /
    • 2004
  • In this study, the upper bound theory is applied to a reinforced slope to develop an limit state analysis method. As processing of this upper bound theory in formulating finite element, the basic idea of numerical method can be obtained from a macroscopic point of view with an anisotropic homogeneous material. The reinforced soil strength reliability depends on properties of reinforcements which consist of the interaction of interfaces between back fill and reinforcements. Both soil's mechanical property and overall behaviour of reinforced soil can be controlled via arranging geometry and relative proportions of reinforced soil. Therefore, the upper bound theory can not only predict the particular limit state action of reinforced soil slope but also is efficiently able to estimate the local plastic failure.

Morphological Representation of Channel Network by Dint of DEM (DEM을 이용한 수로망의 형태학적 표현)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • 제40권4호
    • /
    • pp.287-297
    • /
    • 2007
  • The procedures for identifying channel network are suggested by exploring the scaling property between the local slope and the contributing area, given that the area threshold criterion is an indispensable complement to the slope-area threshold criterion. Through the use of the above procedures and the field data, the basin slopes illustrate the trends of large scatters in space for the geomorphologic/topographic factors. According to the scaling regimes of them both the forms of landscape can be classified as topographic divergence and convergence. The presentation of the procedures proposed in this study is implemented in the case study on Seolma experimental catchment in Korea. As a result the dynamic behaviors of basin are confirmed, and thus the dynamics of channel head advance and channel network are shown to represent better than the method using the topographic chart manually.

Wind direction field under the influence of topography: part II: CFD investigations

  • Li, S.W.;Hu, Z.Z.;Tse, K.T.;Weerasuriya, A.U.
    • Wind and Structures
    • /
    • 제22권4호
    • /
    • pp.477-501
    • /
    • 2016
  • Though hilly topography influences both wind speeds and directions aloft, only the influence on wind speeds, i.e. the speed-up effect, has been thoroughly investigated. Due to the importance of a model showing the spatial variations of wind directions above hilly terrains, it is worthwhile to systematically assess the applicability and limitations of the model describing the influence of hilly topographies on wind directions. Based on wind-tunnel test results, a model, which describes the horizontal and vertical variations of the wind directions separately, has been proposed in a companion paper. CFD (Computational Fluid Dynamics) techniques were employed in the present paper to evaluate the applicability of the proposed model. From the investigation, it has been found that the model is acceptable for describing the vertical variation of wind directions by a shallow hill whose primary-to-secondary axis ratio (aspect ratio) is larger than 1. When the overall hill slope exceeds $20^{\circ}$, the proposed model should be used with caution. When the aspect ratio is less than 1, the proposed model is less accurate in predicting the spatial variation of wind directions in the wake zone in a separated flow. In addition, it has been found that local slope of a hill has significant impact on the applicability of the proposed model. Specifically, the proposed model is only applicable when local slope of a hill varies gradually from 0 (at the hill foot) to the maximum value (at the mid-slope point) and then to 0 (at the hill top).

A Study on the Variation of Ground Safety Factor by Earthworks

  • Kim, Jinhwan;Kwon, O-Il;Baek, Yong;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • 제24권3호
    • /
    • pp.333-341
    • /
    • 2014
  • The construction of roads, tunnels, and bridges results in changes to the local terrain that may influence the ground safety factor, which represents the stability of geotechnical structures. In this study, we assessed construction sites that had collapsed as a result of terrain change, and then simulated variation in the ground safety factor with respect to terrain change caused by road construction. We assumed steep slopes to simulate changes in terrain in a mountainous area and assumed that earthworks took place for road construction by cutting a platform into the slope and altering the slope angle of the terrain both above and below the road. We calculated values of the ground safety factor through a stability analysis of the slope both above and below the road, and examined the variation in the safety factor of the above- and below-road slopes with respect to changes in road width. We found that if the slope angle was the same above and below the road, then the change in the ground safety factor during/after road construction occurred in the slope below the road, and if the slope angle above the road differed from that below, then the change occurred in both the above- and below-road slopes. Furthermore, the ground safety factor was essentially constant for road widths exceeding 2-6 m, depending on both above- and below-road slope angle. The findings of this study can be used to guide the management of construction sites and to assess changes in ground stability during road construction work, particularly in the early stages of earthworks, when the road width is narrow.

Geomorphic Resources of Mt. Palgong, in Daegu (대구 팔공산의 지형자원)

  • JEON, Young-Gweon
    • Journal of The Geomorphological Association of Korea
    • /
    • 제18권4호
    • /
    • pp.247-259
    • /
    • 2011
  • This research aimed to analyse geomorphic resources of Mt. palgong(in Daegu city and Gyeongbuk province) through some field surveys, and then to clarify geomorphic features. The main results are as follows. 1) The geological boundary of the south slope(granite) is more clear than one of the north slope(granite bedrock and metamorphic sedimentary rock). Small basins are along with fault line between granite bedrock and metamorphic sedimentary rock. 2) It is estimated that relatively big valleys on the north slope are due to local climate, geomorphic and geological features. 3) Tor, sheeting joint, gutter are well developed both on the south slope and on the north slope, however the development of polygonal cracking and boulder stream are more dominant on the south slope; river cliff, pool, waterfall are more dominant on the north slope with valleys that well developed. 4) Scenic geomorphic landscapes are mainly developed in Dongsan valley and Chisan valley on the north slope. 5) There are many interesting geomorphic resources in the viewpoint of storytelling in Mt. Palgong. So the specific design to utilize such resources is required

Temporal variation of ecosystem carbon pools along altitudinal gradient and slope: the case of Chilimo dry afromontane natural forest, Central Highlands of Ethiopia

  • Tesfaye, Mehari A.;Gardi, Oliver;Bekele, Tesfaye;Blaser, Jurgen
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.161-182
    • /
    • 2019
  • Quantifying the amount of carbon pools in forest ecosystems enables to understand about various carbon pools in the forest ecosystem. Therefore, this study was conducted in the Chilimo dry afromontane forest to estimate the amount of carbon stored. The natural forest was stratified into three forest patches based on species composition, diversity, and structure. A total of 50 permanent sample plots of 20 m × 20 m (400 ㎡ ) each were established, laid out on transects of altitudinal gradients with a distance of 100 m between plots. The plots were measured twice in 2012 and 2017. Tree, deadwood, mineral soil, forest floor, and stump data were collected in the main plots, while shrubs, saplings, herbaceous plants, and seedling data were sampled inside subplots. Soil organic carbon (SOC %) was analyzed following Walkely, while Black's procedure and bulk density were estimated following the procedure of Blake (Methods of soil analysis, 1965). Aboveground biomass was calculated using the equation of Chave et al. (Glob Chang Biol_20:3177-3190, 2014). Data analysis was made using RStudio software. To analyze equality of means, we used ANOVA for multiple comparisons among elevation classes at α = 0.05. The aboveground carbon of the natural forest ranged from 148.30 ± 115.02 for high altitude to 100.14 ± 39.93 for middle altitude, was highest at 151.35 ± 108.98 t C ha-1 for gentle slope, and was lowest at 88.01 ± 49.72 t C ha-1 for middle slope. The mean stump carbon density 2.33 ± 1.64 t C ha-1 was the highest for the middle slope, and 1.68 ± 1.21 t C ha-1 was the lowest for the steep slope range. The highest 1.44 ± 2.21 t C ha-1 deadwood carbon density was found under the middle slope range, and the lowest 0.21 ± 0.20 t C ha-1 was found under the lowest slope range. The SOCD up to 1 m depth was highest at 295.96 ± 80.45 t C ha-1 under the middle altitudinal gradient; however, it was lowest at 206.40 ± 65.59 t C ha-1 under the lower altitudinal gradient. The mean ecosystem carbon stock density of the sampled plots in natural forests ranged from 221.89 to 819.44 t C ha-1. There was a temporal variation in carbon pools along environmental and social factors. The highest carbon pool was contributed by SOC. We recommend forest carbon-related awareness creation for local people, and promotion of the local knowledge can be regarded as a possible option for sustainable forest management.

Study on the Stability Analysis and Supporting Methods for the Spillway Slopes in Boryeong Dam (보령댐 여수로 사면의 안정성 분석 및 유지방안 연구)

  • 정소걸;한공창;최성웅;박연준
    • Tunnel and Underground Space
    • /
    • 제8권1호
    • /
    • pp.37-45
    • /
    • 1998
  • In this study, two dimensional and three dimensional numerical analysis were performed with a finite difference code for the safe maintenance of the spillway slope of the Boryeong dam. Results of the geological survey and the stereographic projection analysis on the discontinuities were used as input data for the numerical analysis. As a result, several suggestions were given such as the reinforcement of the local tension zone, the decrease in the angle of the slope, the drawdown of the pore pressure in the slope and the removal of the upper benches. A systematic and long-term monitoring system was also suggested.

  • PDF

Establishment of Early Warning System of Steep Slope Failure Using Real-time Rainfall Data Analysis (실시간 강우자료분석을 활용한 산사태 경보시스템 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Park, Dug-Keun;Park, Jung-Hoon;Son, Sung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.253-262
    • /
    • 2010
  • In this study, localized heavy rainfall occurred during the collapse of steep slopes adjacent to the construction site and to ensure the safety of residents to build an early warning system was performed. Forecast/Alert range was estimated based on vulnerability landslide map and past disaster history. And established a critical line in consideration of the characteristics of local rainfall and operating a snake line, the study calculated causing and non-causing points. Also, be measured in real-time analysis of rainfall data in conjunction with the system before the steep slope failure occurred forecast/Alert System is presented.

  • PDF

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Effect of rapid thermal annealing on interface trap density by using subthreshold slope technique in the FD SOI MOSFETs (완전 결핍 SOI MOSFET의 계면 트랩 밀도에 대한 급속 열처리 효과)

  • Jihun Oh;Cho, Won-ju;Yang, Jong-Heon;Kiju Im;Baek, In-Bok;Ahn, Chang-Geun;Lee, Seongjae
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.711-714
    • /
    • 2003
  • In this presentation, we investigated the abnormal subthreshold slope of the FD SOI MOSFETs upon the rapid thermal annealing. Based on subthreshold technique and C-V measurement, we deduced that the hump of the subthreshold slope comes from the abnormal D$_{it}$ distribution after RTA. The local kink in the interface trap density distribution by RTA drastically degrades the subthreshold characteristics and mini hump can be eliminated by S-PGA.A.

  • PDF