Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.183-186
/
2003
Hybrid genetic algorithms (HGAs) have been studied as various ways. These HGAs usually use both the global search property of genetic algorithm (GA) and the local search one of local search techniques. One of the general types, when constructing HGAs, is to incorporate a local search technique into GA loop, and then the local search technique is repeated as many iteration number as the loop. This paper proposes a new HGA with a conditional local search technique (c-HGA) that does not be repeated as many iteration number as GA loop. For effectiveness of the proposed c-HGA, a conventional HGA and GA are also suggested, and then these algorithms are compared with each other in numerical examples,
Journal of the Korean Operations Research and Management Science Society
/
v.32
no.4
/
pp.1-18
/
2007
In this paper, we develop an adaptive genetic algorithm (aGA). The aGA has an adaptive scheme which can automatically determine the use of local search technique and adaptively regulate the rates of crossover and mutation operations during its search process. For the adaptive scheme, the ratio of degree of dispersion resulting from the various fitness values of the populations at continuous two generations is considered. For the local search technique, an improved iterative hill climbing method is used and incorporated into genetic algorithm (GA) loop. In order to demonstrate the efficiency of the aGA, i) a canonical GA without any adaptive scheme and ii) several conventional aGAs with various adaptive schemes are also presented. These algorithms, including the aGA, are tested and analyzed each other using various test problems. Numerical results by various measures of performance show that the proposed aGA outperforms the conventional algorithms.
Journal of the Korean Operations Research and Management Science Society
/
v.30
no.2
/
pp.157-167
/
2005
This paper presents a new perturbation technique for developing efficient iterated local search procedures for the asymmetric traveling salesman problem(ATSP). This perturbation technique uses global information on ATSP instances to speed-up computation and to improve the quality of the tours found by heuristic method. The main idea is to escape from a local optima by introducing perturbations on the out-of-kilter arcs in the problem instance. For a local search heuristic, we use the Kwon which finds optimum or near-optimum solutions by applying the out-of-kilter algorithm to the ATSP. The performance of our algorithm has been tested and compared with known method perturbing on randomly chosen arcs. A number of experiments has been executed both on the well-known TSPLIB instances for which the optimal tour length is known, and on randomly generated Instances. for 27 TSPLIB instances, the presented algorithm has found optimal tours on all instances. And it has effectively found tours near AP lower bound on randomly generated instances.
Journal of the Korea Society of Computer and Information
/
v.15
no.9
/
pp.47-55
/
2010
Linear constraint satisfaction optimization problem is a kind of combinatorial optimization problem involving linearly expressed objective function and complex constraints. Integer programming is known as a very effective technique for such problem but require very much time and memory until finding a suboptimal solution. In this paper, we propose a method to improve the search performance by integrating local search and integer programming. Basically, simple hill-climbing search, which is the simplest form of local search, is used to solve the given problem and integer programming is applied to generate a neighbor solution. In addition, constraint programming is used to generate an initial solution. Through the experimental results using N-Queens maximization problems, we confirmed that the proposed method can produce far better solutions than any other search methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.2
/
pp.825-836
/
2016
In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.317-322
/
2002
The major operations of Evolutionary Computation include crossover, mutation, competition and selection. Although selection does not create new individuals like crossover or mutation, a poor selection mechanism may lead to problems such as taking a long time to reach an optimal solution or even not finding it at all. In view of this, this paper proposes a hybrid Evolutionary Programming (EP) algorithm that exhibits a strong capability to move toward the global optimum even when stuck at a local minimum using a synergistic combination of the following three basic ideas. First, a "local selection" technique is used in conjunction with the normal tournament selection to help escape from a local minimum. Second, the mutation step has been improved with respect to the Fast Evolutionary Programming technique previously developed in our research group. Finally, the crossover and mutation operations of the Genetic Algorithm have been added as a parallel independent branch of the search operation of an EP to enhance search diversity.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.12
/
pp.1498-1506
/
1999
In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.
Journal of the Korea Society of Computer and Information
/
v.19
no.10
/
pp.13-21
/
2014
The set covering problem (SCP) is one of representative combinatorial optimization problems, which is defined as the problem of covering the m-rows by a subset of the n-columns at minimal cost. This paper proposes a method utilizing Integer Programming-based Local Search (IPbLS) to solve the set covering problem. IPbLS is a kind of local search technique in which the current solution is improved by searching neighborhood solutions. Integer programming is used to generate neighborhood solution in IPbLS. The effectiveness of the proposed algorithm has been tested on OR-Library test instances. The experimental results showed that IPbLS could search for the best known solutions in all the test instances. Especially, I confirmed that IPbLS could search for better solutions than the best known solutions in four test instances.
Journal of Korean Institute of Industrial Engineers
/
v.28
no.1
/
pp.76-86
/
2002
In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.3516-3541
/
2018
Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.