• Title/Summary/Keyword: Local Melting

Search Result 80, Processing Time 0.028 seconds

The effect of local heating on superconductivities in internal tin processed Nb$_3Sn$ wires (내부 확산법에 의한 Nb$_3Sn$ 초전도 선재에서 부분 가열이 초전도 특성에 미치는 영향)

  • Ha, Dong-Woo;Oh, Sang-Soo;Ha, Hong-Soo;Lee, Nam-Jin;Kwon, Young-Kil;Ryu, Kang-Sik
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2000
  • There is the possibility that internal tin processed Nb$_3Sn$ wires are locally heated during the drawing process and the jacketing process. It is important to know the variations in J$_c$ of internal tin processed Nb$_3Sn$ wires caused by local heating. Internal tin processed Nb$_3Sn$ rods were cold worked to 2.28 mm, using the appropriate reduction ratio, and then cut into several pieces. At this stage, wires were locally 50 mm heat zone heated up to 360$^{\circ}C$. The locally heated Nb$_3Sn$ wires were drawn to a final diameter size of 0.81 mm. Others were cold worked successively to 0.81 mm and locally heated with the same conditions. 2 types of locally heat treated wires were wound on Ti-6Al-4V barrels and heat treated for the Nb$_3Sn$ reaction. Local heating of internal tin processed Nb$_3Sn$ wires after the J$_c$ of these wires. However, local heating at an intermediate stage of the drawing process caused a decrease in J$_c$. When the local heating temperatures were higher than melting point of Sn, non-Cu J$_c$'s decreased significantly. A Sn-Cu alloyed boundary appeared after local heating over the melting point of Sn, and caused work hardening and a decrease in the workability.

  • PDF

Mechanically Driven Decomposition of Intermetallics

  • Kwon, Young-Soon;Kim, Hyun-Sik;Gerasimov, Konstantin B.
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.422-432
    • /
    • 2002
  • Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): $\alpha$(${\alpha}_1$) bcc solid solution, $\alpha$+$\beta$-phase ($Fe_{2-x}Ge$), $\beta$-phase, $\beta$+FeGe(B20), FeGE(B20), FeGe(B20)+$FeGe_2$,$FeGe_2$,$FeGe_2$+Ge, Ge. Incongruently melting intermetallics $Fe_6Ge_5$ and $Fe_2Ge_3$ decompose under milling. $Fe_6Ge_5$ produces mixture of $\hat{a}$-phase and FeGe(B20), $Fe_2Ge_3$ produces mixture of FeGe(B20) and $FeGe_2$ phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation $Fe_5Sn_3$ and $FeSn_2$ phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic $Fe_5Sn_3$ phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.

Heat Transfer Analysis in High Efficiency Electric Melting Furnace (고효율/친환경 전기 용해로 내의 열전달 해석)

  • Seol, Dong-Il;Lee, Byung-Hwa;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2285-2290
    • /
    • 2007
  • The main objective of this study is to analyze the heat transfer characteristics in the electric melting furnace. Local temperatures are measured at various location in the furnace using the B-type thermocouples. In this paper, the numerical simulation was performed using the ANSYS software, and compared with experimental data. Mathematical heat transfer model for the prediction of temperature distribution has been developed by considering the thermal radiation among heating element, crucible and insulating materials. The results show that the temperature distributions predicted by the numerical simulation agree with experimental results comparatively.

  • PDF

Close-contact melting of ice in a horizontal cylinder (수평원관내 얼음의 접촉융해과정)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

A Study on the Preheating Effect of Multi-Heat Sources using Laser Plasma in the Thermally Assisted Machining of a High-Melting-Point Material (고융점 소재의 열 보조 가공에서 레이저 -플라즈마 다중열원의 예열 효과에 대한 연구)

  • Lee, Choon-Man;Kim, Seong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.93-98
    • /
    • 2019
  • Recently, with the development of the aerospace and automotive industries, the demand for high-melting-point materials has increased. However, high-melting-point materials are difficult to cut through conventional machining methods. Thermally assisted machining (TAM) is a method for improving the machinability by preheating the materials. A laser, the most commonly used device for TAM, has high efficiency through local preheating but is not sufficient for maintaining a high preheating temperature due to rapid cooling. However, the use of multi-heat sources can supplement the disadvantage of a single heat source. The high preheating temperature can be maintained with a wide and deep heat-affected zone (HAZ) by multi-heat sources. The purpose of this study is to analyze the preheating effects of multi-heat sources using laser plasma. Thermal analysis and preheating experiments were carried out. As a result, the high preheating effect of multi-heat sources compared with a single heat source was verified.

An Experimental Study on the Melting of a Horizontal Cylindrical Ice-Bar Submerged in Water (물속에 水平으로 잠겨 있는 圓 形 얼음 棒 의 融解現象 에 관한 實驗的 硏究)

  • 이동욱;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.414-420
    • /
    • 1985
  • The melting phenomenal of the horizontal cylindrical ice-bar submerged in water are experimentally investigated for the temperature range from 2.5.deg. C to 15.deg. C. The shapes of the melting ice-bar are recorded by the Photo-elasticity Apparatus with modification of the test section. The shadowgraphs of the melting ice-bar show that water adjacent to the bar flows upward for the temperature range from 2.5.deg. C to 5.6.deg. C while above the temperature of 5.6.deg. C the flow is downward direction. The local and average Nusselt numbers become minimum at 5.6.deg. C which is considered as a critical temperature and the Nusselt numbers increase as temperature difference from the critical temperature increase.

Dental Co-Cr alloys fabricated by selective laser melting: A review article (선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰)

  • Kang, Hyeon-Goo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.248-260
    • /
    • 2021
  • Cobalt-chromium alloys are used to fabricate various dental prostheses, and have advantages of low cost and excellent mechanical properties compared to other alloys. Recently, selective laser melting, which is an additive manufacturing method, has been used to overcome the disadvantages of the conventional fabrication method. A local rapid heating and cooling process of selective laser melting induces fine microstructures, grain refinement, and reduction of porosities of the alloys. Therefore, it can improve mechanical properties compared to the alloys fabricated by the conventional method. On the other hand, layering process and rapid heating and cooling cause accumulation of a large amount of residual stresses that can adversely affect the mechanical properties. A heat treatment for removing residual stresses through recovery and recrystallization process caused complicated changes in mechanical properties induced by phase transformation, precipitate and homogenization of the microstructures. The purpose of this review was to compare the manufacturing methods of Co-Cr alloys and to investigate the characteristics of Co-Cr alloys fabricated by selective laser melting.

The Status of Maintenance of Exhaust Fans and Bag filters in Melting Processes in a foundry industrial complex (주물 공단 용해공정의 송풍기 및 백필터 관리 실태)

  • Kim, Tae Hyeung;Ha, Hyun Chul;Jeoung, Chun Hwa;Seo, Jeoung Yoon;Piao, Cheng Xu;Yang, Jun Ho;Li, Xiaoyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.212-223
    • /
    • 2007
  • 18 Local exhaust ventilation systems in 10 melting companies located in an industrial complex were tested to know the status of maintenance. Test items were fan flowrates, fan static pressures, rotational speeds and differential pressures of bag filters. Only 22% of the tested fans has more than 80% flowrate efficiency. 44% of the fans has lower than 60% efficiency. The performance of the fans are not in a good status. For the fans with lower than 60% efficiency, the analysis shows that the lower flowrate might be caused by the degradation of fan performance. On the other hand, for the fan s with higher than 60% efficiency, the main cause of flowrate reduction might be too much pressure losses due to clogging of filter bags. The degradation of fans usually lead the reduction of hood capture efficiency, resulting in the increase of contaminant concentrations in workplace. To keep fans in good status, self inspections should be periodically conducted. This inspection should include the measurements of flowrate and pressures. The most important thing to be performed is the initial test of local exhaust ventilation system because the initial test data should be used to know the level of system degradation.

Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux (일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석)

  • Kim, Hark-Koo;Jeong, Si-Young;Hur, Nahm-Keon;Lim, Tae-Won;Park, Yong-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

Strengthening of Steel Sheets for Automobile by $CO_2$ Laser Beam Irradiation (자동차용 강판의 $CO_2$ 레이저 빔 조사 강화)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jung-Oh;Oh, Sang-Jin;Cho, Won-Seok;Lee, Doo-Hwan;Shin, Chul-Soo
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • The laser strengthening of 35kgf/㎟ and 60kgf/㎟ grade steel sheets is investigated by using CO$_2$ laser beam irradiation. The increase of tensile strength is dominated by the number of fully penetrated melting line. Also. the optimal laser input energy(hardness) and the number of melting line (melting width) are important variables for laser strengthening. Local strengthening by laser beam may be effective for the weight reduction of components where the tailored welded blank can not be applied.

  • PDF