유동인구 예측은 상권의 특성에 따른 점포의 입지 선정 및 고객 맞춤형 마케팅 등 민간 분야에서부터 교통망 등 사회 간접 자본 설계를 위한 공공 분야에 이르기까지 다양한 목적으로 연구되어 왔으며, 최근에는 Covid-19 의 확산에 따라 그 중요도가 더욱 높아지고 있다. 보다 정교한 예측을 위해서는 전체적인 유동 인구 뿐만 아니라 특성 별로 세분화된 하위 그룹에 대해서도 정확한 예측이 요구되나, 기존의 예측 모델들은 이러한 데이터의 계층 구조를 고려하지 않았다. 본 연구에서는 세분화된 하위 그룹 별 유동인구의 예측 정확도를 높이기 위해 전체 유동인구의 패턴을 동시에 활용하는 Global-Local 구조 기반의 Deep Learning 유동인구 분석 모델을 제안한다. 실험 결과 단일 시계열 데이터만을 사용하는 경우 대비 5.4%~52.6%의 예측 오류 감소 효과가 있음을 확인하였다.
무인 자율주행 차량에서의 경로 생성 기법은 차량이 자동적으로 안전하고 효율적인 경로를 생성하고 주행할 수 있도록 해 준다. 경로에는 크게 전역경로와 지역경로가 있다. 전역경로는 차량이 출발점으로부터 도착점까지 가기 위해 주행해야 하는 구간을, 지역경로는 전역경로에서 얻은 구간을 주행하기 위해서 차량이 실제로 주행해야 할 경로를 의미한다. 본 논문에서는 지역경로 생성을 위하여 효율성 높은 곡선 함수를 사용하는 기존연구에서 더 나아가 학습을 통해 경로를 생성하는 방법을 제안한다. 먼저 강화학습을 통해서 후보경로에 대한 예측 보상 값을 얻고 보상 값이 최고가 되는 경로를 찾는 작업을 한다. 또한 인공 신경망을 통해서는 생성된 경로에 최적화된 조향 명령을 주기 위해 조향 각을 학습하는 작업을 한다. 더 나아가 주행하는 경로에 장애물이 발견되더라도 이를 효율적으로 회피하는 최적의 경로를 학습 기법을 통해 만들어낸다. 본 논문에서 제안된 알고리즘의 우수성은 실제 주행 환경으로 모델링한 시뮬레이션 실험을 통해 검증되었다.
본 연구는 평생학습사회의 도래와 함께 국내의 많은 도시들이 평생학습도시를 표방하고 있는 시점에서 지역지리 지식을 중심으로 지역학습 프로그램을 구안하고 그것을 현장에 적용하는 과정을 밝히려한 것이다. 연구의 주요 결과는 다음과 같다; 첫째, 평생학습사회의 지역학습 프로그램의 구성은 학습자, 교수자, 지역의 특징적인 맥락을 중심으로 상황학습론적 접근이 가장 바람직하다. 또한 학습동아리 구성과 같은 지역인적자원의 적극적인 양성과 이들의 참여를 통한 지역사회봉사학습(SERVICE-LEARNING)이 교수법으로 효과적이다. 둘째, 연구자가 직접 구성하고 참여한 지역학습 프로그램인 '지리 탐방대'를 통한 현장중심 체험학습의 결과, 대부분 참가자들이 지역과 지역정체성에 대한 인식 전환이 일어났다. 셋째, 평생학습사회에서 지리교육의 대중화를 위해 지리교사를 비롯하여 지역전문가들의 보다 적극적인 참여가 요구되었다. 현실적으로 지역을 종합적으로 가르칠 수 있는 인적 자원이 부족한 상황에서 지역전문가들의 역할이 긴요하였다. 이후 지역 특성에 맞는 지역학습 프로그램의 개발과 실생활에 적용이 이어진다면 지리교육은 평생학습사회에서 안정적인 토대가 될 것이다.
다차원 시스템(multidimensional system)에 대한 정확한 모델링을 위해 “자율 분산 신경망(Self-organized Distirbuted Networks, SODN)”을 제안하였다. 제안한 신경망은 자율 신경망(Self-organized Networks)과 다수의 소규모 다층 신경망(Multilayer Neural Networks)이 조합되어 지역적 병렬 학습을 수행하는 부분 학습망으로서 학습 속도가 빠르고 학습의 정밀도를 높일 수 있으며 타 부분망 학습에서 문제가 되는 과다한 학습 메모리 소요와 학습되니 않은 영역에 대한 낮은 일반화능력 등의 문제가 보완된 새로운 신경망이다. 학습 실험 결과, 제안한 신경망은 기존의 다층 신경망과 RBF(Radial Basis Function) 신경망에 비해서 우수한 성능을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4429-4447
/
2018
Local binary descriptors are well-suited for many real-time and/or large-scale computer vision applications, while their low computational complexity is usually accompanied by the limitation of performance. In this paper, we propose a new optimization framework, RLDB (Robust-LDB), to improve a typical region-based binary descriptor LDB (local difference binary) and maintain its computational simplicity. RLDB extends the multi-feature strategy of LDB and applies a more complete region-comparing configuration. A cascade bit selection method is utilized to select the more representative patterns from massive comparison pairs and an online learning strategy further optimizes descriptor for each specific patch separately. They both incorporate LDP (linear discriminant projections) principle to jointly guarantee the robustness and distinctiveness of the features from various scales. Experimental results demonstrate that this integrated learning framework significantly enhances LDB. The improved descriptor achieves a performance comparable to floating-point descriptors on many benchmarks and retains a high computing speed similar to most binary descriptors, which better satisfies the demands of applications.
A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.
유전자 알고리즘(GA:Genetic Algorithm)은 최적화 문제를 풀기 위해 생물학적 진화(evolution) 과정을 모방한 최적화 알고리즘이다. 유전자 알고리즘은 복잡한 상태 공간에서 최적 해를 찾기 위해 전통적인 최적화 기법과는 달리 유향적 임의 탐색을 행한다. 학습에 해당하는 국부 탐색(local search)을 유전적 알고리즘은 exploration 탐색과 exploitation 탐색의 균형을 유지시켜 줄 수 있는 한 방법이다. 모집단 내의 각 개체가 진화 과정 중에 학습한 유전적 특질들은 그 다음 세대에서 되물림 되며 이러한 학습(learning) 과정을 유전자 알고리즘과 결합시킴으로써 탐색 속도의 향상을 기대할 수 있다. 이 논문에서는 함수 최적화를 위해 속도를 개선한 셀룰러 학습을 기반으로 하는 유전자 알고리즘을 제안한다. 제안하는 셀룰러 학습 전략은 셀룰러 오토마타의 주기성과 수렴성을 기반으로 하며, 유기체가 그 개체의 생명 주기의 한 세대에서 얻게되는 지식과 경험들을 자손에게 전달한다는 이론을 바탕으로 한다. 제안한 셀룰러 학습 전략의 효율을 기존의 복합 유전자 알고리즘에서의 라마키안 진화 및 볼드윈 효과와 비교하였다. 다양한 테스트 베드 함수에 대한 실험을 통하여 셀룰러 학습에 의한 개체의 국부적 향상이 전체적인 성능 향상에 기여함을 알 수 있었고 제안한 학습 전략이 기존의 방법보다 더 빨리 전역 최적 해를 찾을 수 있음을 증명하였다.
이 연구는 문화기반시설인 공공도서관의 지역문화발전 기여전략을 제시하는데 목적이 있다, 이를 위하여 먼저 공공도서관이 수행하는 업무와 지역문화발전의 상의적 수수관계를 바탕으로 기여도를 평가하고 한계를 적시하였다. 이어 공공도서관과 밀접한 지역문화를 지식문화, 독서문화, 학습문화, 대중문화, 여가문화로 구분하고 이들의 발전과 진흥을 위한 공공도서관의 기여전략(장서개발과 이용서비스 중심의 핵심역량 제고, 디지털 정보해득력 교육 지원기능 강화, 독서생활화를 위한 독서촉진과 저변확대, 평생학습(문화)프로그램 제공서비스의 최적화, 시설 공간의 개방화 및 친숙성 증대, 지역 유관기관과의 연계 협력사업 확대)을 제안하였다.
기계학습은 주어진 디지털 신호 Data로부터 비용함수를 만들고, 그 비용함수를 최소화함으로 학습이 이루어진다. 비용함수는 디지털 신호 Data의 양과 인공신경망의 구조에 따라 비용함수에 부분 최솟값(local minimum)들이 생기게 된다. 비용함수의 부분 최솟값들은 학습을 방해하는 요소가 된다. 이러한 방법을 해결하는 여러 방법 중 우리의 제안 방법은 학습률(Step-size)을 변화시키는 방법이다. 학습률을 고정된 상수로 이용하는 기존의 방법과는 다르게 비용함수를 이용한 다변수함수를 이용함으로써 불필요한 기계학습이 이루어지는 것을 방지할 수 있으며, 최솟값으로 가는 최적의 길을 찾을 수 있다. 수치적 실험을 통하여 기존의 방법보다 우리가 제안하는 방법을 이용하여 약 3%(88.8%→91.5%)의 성능이 향상하는 결과를 얻었다.
최근 개인의 자아실현을 도모하고 삶의 질을 높여 도시 전체의 경쟁력을 향상시키고 도시와 도시 주민이 함께 성장 발전 할 수 있도록, 언제, 어디서나, 누구든 원하는 것을 배우고 즐길 수 있는 학습도시를 만들고자 하는 움직임이 활발해 지고 있다. 세계 많은 선진국들은 학교와 공공시설을 활용하여 학습도시를 만드는 프로젝트를 지원하고 있는데, 이를 통해 지역주민들에게 자기 성장의 기회를 제공하고, 지역사회의 문제를 해결하고자 하고 있다. 우리나라 역시 학교 유휴시설을 활용하여 다양한 프로그램을 제공하고 있지만, 지역 주민들을 대상으로 하는 교육 프로그램이나, 지역 공동체와의 파트너쉽에 의한 학습 프로그램 제공이 부족한 실정이다. 성공적인 학습도시 구현을 위해 공간적 소프트웨어적 전략이 필요한 때이다. 따라서 학습 가능한 시설의 공간 데이터를 체계적으로 정리하고, 현재의 문제점을 분석하여 다양하게 활용할 수 있는 방안을 모색하고자 한다. 또한 주민들이 필요로 하는 프로그램을 분석하여 실질적이고 효율적인 학습도시를 구현하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.