• 제목/요약/키워드: Local Image Processing

검색결과 508건 처리시간 0.044초

볼록 구조자룰 위한 최적 분리 알고리듬 (An Optimal Decomposition Algorithm for Convex Structuring Elements)

  • 온승엽
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1167-1174
    • /
    • 1999
  • In this paper, we present a new technique for the local decomposition of convex structuring elements for morphological image processing. Local decomposition of a structuring element consists of local structuring elements, in which each structuring element consists of a subset of origin pixel and its eight neighbors. Generally, local decomposition of a structuring element reduces the amount of computation required for morphological operations with the structuring element. A unique feature of our approach is the use of linear integer programming technique to determine optimal local decomposition that guarantees the minimal amount of computation. We defined a digital convex polygon, which, in turn, is defined as a convex structuring element, and formulated the necessary and sufficient conditions to decompose a digital convex polygon into a set of basis digital convex polygons. We used a set of linear equations to represent the relationships between the edges and the positions of the original convex polygon, and those of the basis convex polygons. Further. a cost function was used represent the total processing time required for computation of dilation/erosion with the structuring elements in a decomposition. Then integer linear programming was used to seek an optimal local decomposition, that satisfies the linear equations and simultaneously minimize the cost function.

  • PDF

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출- (Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object-)

  • 김시찬;최동엽;황헌
    • Journal of Biosystems Engineering
    • /
    • 제26권1호
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

국소영역 내의 CCT법을 이용한 고정밀 직선 검출 (A High Precision Line Detection Based on Local Area CCT Method)

  • 정남채
    • 융합신호처리학회논문지
    • /
    • 제14권2호
    • /
    • pp.82-89
    • /
    • 2013
  • 본 논문에서는 화상에 존재하는 디지털 직선을 고정밀도로 검출하는 방법을 제안한다. 화상의 크기를 $N{\times}N$로 하면, 이 계산량은 $O(N^4)$이지만 실제 사용하기는 곤란하므로, 검출 정밀도의 열화를 억제하면서 계산량을 $O(N^3)$로 하는 알고리즘을 검토하였다. 국소영역에서 Hough 변환하여 추출된 선분을 연신처리(stretching treatment)하고, 화상으로부터 직선을 검출하는 방법은 길거나 짧은 여러 가지의 직선을 고속으로 검출할 수 있는 훌륭한 방법이지만, 기울어진 선분의 검출 정밀도는 약간 떨어진다. 본 논문에서는 사선의 검출 정밀도를 향상시킨 직선 검출방법을 국소영역에 적용함으로써 처리속도가 감소되지 않고, 직선을 고정밀도로 검출하는 방법에 관해서 논술한다. 실험 결과 제안된 방법은 기존의 방법과 같은 정도 이하의 시간에서 정밀도가 높은 직선을 검출할 수 있다는 것을 확인하였다.

로컬 버퍼 최적화를 통한 병렬 처리 캐니 경계선 검출기의 FPGA 설계 (FPGA Design of a Parallel Canny Edge Detector with Optimized Local Buffers)

  • 민인기;심수현;황승원;김선희
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.59-65
    • /
    • 2023
  • Edge detection in image processing and computer vision is one of the most fundamental operations. Canny edge detection algorithm has excellent performance and is currently widely used. However, it is difficult to process the algorithm in real-time because the algorithm is complex. In this study, the equations required in the algorithm were simplified to facilitate hardware implementation, and the calculation speed was increased by using a parallel structure. In particular, the size and management of local buffers were selected in consideration of parallel processing and filter size so that data could be processed without bottlenecks. It was designed in verilog and implemented in FPGA to verify operation and performance.

  • PDF

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

A Modified Steering Kernel Filter for AWGN Removal based on Kernel Similarity

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제20권3호
    • /
    • pp.195-203
    • /
    • 2022
  • Noise generated during image acquisition and transmission can negatively impact the results of image processing applications, and noise removal is typically a part of image preprocessing. Denoising techniques combined with nonlocal techniques have received significant attention in recent years, owing to the development of sophisticated hardware and image processing algorithms, much attention has been paid to; however, this approach is relatively poor for edge preservation of fine image details. To address this limitation, the current study combined a steering kernel technique with adaptive masks that can adjust the size according to the noise intensity of an image. The algorithm sets the steering weight based on a similarity comparison, allowing it to respond to edge components more effectively. The proposed algorithm was compared with existing denoising algorithms using quantitative evaluation and enlarged images. The proposed algorithm exhibited good general denoising performance and better performance in edge area processing than existing non-local techniques.

농업 이미지 처리를 위한 빅테이터 플랫폼 설계 및 구현 (Design and Implementation of Big Data Platform for Image Processing in Agriculture)

  • 반퀴엣뉘엔;신응억뉘엔;둑티엡부;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.50-53
    • /
    • 2016
  • Image processing techniques play an increasingly important role in many aspects of our daily life. For example, it has been shown to improve agricultural productivity in a number of ways such as plant pest detecting or fruit grading. However, massive quantities of images generated in real-time through multi-devices such as remote sensors during monitoring plant growth lead to the challenges of big data. Meanwhile, most current image processing systems are designed for small-scale and local computation, and they do not scale well to handle big data problems with their large requirements for computational resources and storage. In this paper, we have proposed an IPABigData (Image Processing Algorithm BigData) platform which provides algorithms to support large-scale image processing in agriculture based on Hadoop framework. Hadoop provides a parallel computation model MapReduce and Hadoop distributed file system (HDFS) module. It can also handle parallel pipelines, which are frequently used in image processing. In our experiment, we show that our platform outperforms traditional system in a scenario of image segmentation.

Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images

  • Sengee, Nyamlkhagva;Sengee, Altansukh;Adiya, Enkhbolor;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1409-1416
    • /
    • 2012
  • An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.