기후 온난화에 의한 한반도의 아열대화된 기후는 국지성 폭우가 내는 경향을 높이고 있으며 이로 인해 돌발홍수등의 피해가 증가하고 있다. 국지성 폭우의 피해를 피하기 위해 대규모의 클라이언트들에게 국지성 폭우 예보 서비스가 필요하지만 이러한 서비스를 가능하게 하는 무선 데이터 방송 기반의 서비스 프레임워크 개발이 보고된 것이 없다. 본 논문에서는 대규모 클라이언트들에게 정보 서비스를 가능하게 하는 무선데이터 방송 기법을 이용하여 국지성 폭우 예보 서비스를 가능하게 하는 프레임워크를 설계하고 구현한다. 개발된 서비스 프레임워크는 다양한 데이터 스케줄링 기법과 인덱싱 기법을 적용할 수 있는 확장성을 가진다. 시뮬레이션을 통해 성능을 평가하여 개발된 프레임워크가 효율적으로 국지성 폭우 예보 서비스를 제공함을 보였다.
This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.
최근 기후변화의 영향으로 호우의 발생빈도가 증가하고 있으며, 도시지역의 호우는 돌발적이고 국지적인 특성을 가지고 있어 인명과 재산피해 역시 증가하고 있다. 도시지역에서의 국지성호우에 의한 홍수는 예고없이 빠르게 발생하고 시 공간적으로 빈번하게 발생함으로써 인명과 재산피해를 증가시킨다. 결국 도시지역의 성공적인 홍수 관리는 얼마나 빠르고, 세밀하게 관측할 수 있느냐가 관건이다. 국지성 호우는 저층에서 형성되는 강우가 지배적이며, 기존의 대형레이더는 저층 강우의 탐지 및 변동성 관측에 취약하다. 이에, 도시지역에서의 국지성 호우를 신속하게 관측하고 예측함으로써, 도시홍수 대응체계를 고도화하고 관측 및 예측 정확도를 향상시켜 도시홍수 피해를 최소화하기 위한 기존과 다른 새로운 도시홍수예보 관리시스템 구축이 필요하다. 현재 수재해 정보플랫폼 융합기술 연구단에서 고해상도 수문정보를 강우예측 및 홍수 모형과 연계하여 신개념 수재해 대응기술 확보를 목표로 추진 중에 있으며, 국지성 호우 관측을 위하여 고정밀 수문레이더를 기반으로 국지성 호우 탐지 및 예측, 도시홍수 예측 및 운영기술을 개발 중에 있다. 이 연구를 통해 도시지역에 대한 고정밀 관측이 가능함으로써 도시홍수 경보 시스템이 보다 정확하고 상세화될 것으로 기대된다.
This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).
최근 짧은 시간 동안 많은 강우가 내리는 국지성 집중호우가 빈번히 발생하고 이로 인한 침수피해가 증가하고 있다. 국지성 집중호우로 인한 피해를 예방하기 위하여 기상청이 제공하는 지역 앙상블 예측시스템(Local ENsemble prediction System, LENS)과 관측자료와 동네예보 자료를 활용한 기계학습과 확률 매칭(Probability Matching, PM) 기법을 이용하여 수문학적 정량강우예측정보(Hydrological Quantative Precipitation Forecast, HQPF)을 개발하였다. 국지성 집중호우로 인한 침수피해 대비를 위한 호우 영향정보로 HQPF를 생산하고 있지만, 낮은 강우강도에 대하여 과대예측하는 경향이 나타났다. 본 연구에서는 HQPF의 예측정확도 향상과 과대예측 성향을 개선하기 위하여 머신러닝 학습자료 기간확대, 앙상블 기법 분석 및 확률매칭(PM) 기법 프로세스 변경을 통하여 HQPF 개선하였다. 개선된 HQPF의 예측성능을 평가하기 위해 2021년 8월 27일 ~ 2021년 9월 3일 장마전선으로 인한 호우 사례를 대상으로 예측성능 검증을 수행하였다. 10 mm 이하의 강우에 대하여 예측정확도가 크게 향상되었고, 관측과 유사한 발생가능성 및 강우영역을 예측하는 등 과대예측 성향이 개선되었음을 확인하였다.
본 연구에서는 남부 내륙지역에 속한 시군구별 태풍으로 인한 피해를 예측할 수 있는 태풍피해예측모형을 개발하였다. 내륙지역의 태풍 피해는 호우, 강풍으로 인한 피해가 복합적으로 발생하므로, 모형을 구성하는 변수가 많고 다양하나, 내륙지역 시군구 단위의 피해사례는 모형을 개발할 만큼 충분하지 않다. 태풍피해 관련 수문기상 자료는 3시간 간격 지속기간별 최대 강우량, 총강우량, 1-5일 선행강우량, 최대풍속 및 제주도 인근 지역에서의 태풍중심기압을 이용하였다. 피해자료의 부족을 고려하기 위해 군집화를 하였으며, 강우 관련 자료의 다중공선성을 제거하기 위하여 주성분분석 등 다변량 통계분석을 이용하여 권역별(경남, 경북, 전남, 전북)로 피해예측모형을 개발하였다. 모형에 의한 태풍피해추정치와 실측치는 최대 2.2배 정도까지 차이가 발생하였는데, 이는 강풍에 의한 피해를 추정하기 어렵고, 전국 69개 ASOS 관측소에 의한 강우자료가 지역적 강우특성을 제대로 반영하지 못하기 때문인 것으로 추정된다.
본 논문에서는 KLAPS(Korea Local Analysis and Prediction System)의 재분석 자료를 이용하여 지능형 뉴로-퍼지 알고리즘 RBFNNs(Polynomial-based Radial Basis Function Neural Networks) 기반 호우특보 판별 모델을 개발한다. 기존의 호우예측 시스템들의 예측능력은 일반적으로 기상데이터의 가공 기법의 영향을 받는다. 본 연구에서는 이를 보완하기 위하여 기상데이터의 전처리를 통한 호우예측 방법을 소개한다. 기상 데이터 전처리 기법은 KLAPS 데이터를 기반으로 지점별 변환, 누적강수량 생성, 시계열 데이터 가공, 호우특보 추출 방식에 의하여 설계된다. 최종적으로, 향후 t(t=1,2,3) 시간 후 6시간 동안 누적강수량에 대해 예측하고 호우특보를 결정하기 위한 정보를 제공한다. 또한 다항식의 형태, 규칙의 개수, 퍼지화 계수와 같은 제안된 모델의 중요 파라미터는 최적화 기법인 차분 진화(Differential Evolution; DE)를 이용하여 최적화한다.
This study aims at examining the sensitivity of numerical simulations to the resolution of initial and boundary data, and to an application of WRF (Weather Research and Forecasting) 3DVAR (Three Dimension Variational data Assimilation). To do this, we ran the WRF model by using GDAS (Global Data Assimilation System) FNL (Final analyses) and the KLAPS (Korea Local Analysis and Prediction System) analyses as the WRF's initial and boundary data, and by using an initial field made by assimilating the radar data to the KLAPS analyses. For the sensitivity experiment, we selected a heavy rainfall case of 21 September 2010, where there was localized torrential rain, which was recorded as 259.5 mm precipitation in a day at Seoul. The result of the simulation using the FNL as initial and boundary data (FNL exp) showed that the localized heavy rainfall area was not accurately simulated and that the simulated amount of precipitation was about 4% of the observed accumulated precipitation. That of the simulation using KLAPS analyses as initial and boundary data (KLAPC exp) showed that the localized heavy rainfall area was simulated on the northern area of Seoul-Gyeonggi area, which renders rather difference in location, and that the simulated amount was underestimated as about 6.4% of the precipitation. Finally, that of the simulation using an initial field made by assimilating the radar data to the KLAPS using 3DVAR system (KLAP3D exp) showed that the localized heavy rainfall area was located properly on Seoul-Gyeonggi area, but still the amount itself was underestimated as about 29% of the precipitation. Even though KLAP3D exp still showed an underestimation in the precipitation, it showed the best result among them. Even if it is difficult to generalize the effect of data assimilation by one case, this study showed that the radar data assimilation can somewhat improve the accuracy of the simulated precipitation.
In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.
최근 들어 기상 이변에 따라 단시간 동안에 특정 소유역에 집중하는 호우 또는 초과우량에 의한 국지성 돌발홍수가 빈번히 발생함에 따라, 이로 인한 인명과 재산의 상당한 위험과 손실은 전 세계적인 것으로서 우리나라도 증가일로에 있다. 돌발홍수는 일반적으로 급경사 소유역에서 집중적인 강우에 의해 발생하여 빠른 유출과 토석류를 동반하기 때문에, 홍수피해를 대비하기 위한 사전 홍수예보시간이 부족할 정도로 급격히 빠른 홍수의 특성을 보인다. 본 연구의 목적은 대상유역의 확률강우량으로부터 돌발홍수지수(flash flood index, FFI)를 산정하여 돌발홍수의 심각성 정도를 정량적으로 분석하고자 한다. 특히 미계측 유역하천에서의 지역 홍수예 경보를 위한 기초자료를 제공할 수 있도록, 대상유역에 대하여 상대적인 돌발홍수심도를 제시할 수 있는 FFI-D-F(돌발홍수지수-지속시간-빈도) 관계곡선을 개발하였다. 또한 FFI-D-F 관계곡선은 현존 및 계획 방재시설물의 돌발홍수 대응능력 및 잔여홍수위험 평가에 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.