• Title/Summary/Keyword: Local Extrusion

Search Result 25, Processing Time 0.021 seconds

A Case Study on the Release Characteristic and Removal Efficiency of Vinyl Chloride in the Poly Vinyl Chloride Extrusion Process (PVC압출공정의 염화비닐 발생특성과 작업환경개선에 관한 사례연구)

  • Park, Dong Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.91-98
    • /
    • 1993
  • This study was carried out to investigate characteristic of vinyl chloride emissioned from poly vinyl chloride extrusion process and to evaluate the efficiency of local exhaust ventilation system. Before local ventilation facility was constructed in poly vinyl chloride extrusion process, the average worker exposure to vinyl chloride was 3.15 ppm, which exceeded Threshold Limit Value of American Conference of Gorvernmental Industrial Hygienists (ACGIH-TLV), 1 ppm. lt is possible that vinyl chloride residues in the poly vinyl chloride resin was released or degased due to extrusion heat. The larger the width of vinyl tube become, the higher worker exposure to vinyl chloride was. It is estimated that vinyl chloride from vinyl chloride resin increased as amount of poly vinyl chloride resin extruded in the extrusion process increased. Canopy hood was an appropriate type for poly vinyl chloride resin extrusion process. This local exhaust ventilation has fan static pressure of 7.65 inch wg($190mmH_2O$, total volumetric flowlate of 4,796 CFM ($135.8m^3$/min) and fan power requirement of 12 hp (8.952 Kw). After this local exhaust ventilation was constructed there, the average concentration of worker exposure to vinyl chloride was reduced to be 0.46 ppm, which was below the Threshold Limit Value, 1 ppm. Also, the removal efficiency rate of vinyl chloride attained by local exhaust ventilation was 85.3%. It was a statistically significant (p<0.01).

  • PDF

Development of A Process Map for Extrusion of Cu-Ti Bimetal Bar (구리-타이타늄 이중봉 직접압출의 공정지도 개발)

  • Kim Joong-Sik;Lee Yong-Sin;Sim K.S.;Park H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.499-502
    • /
    • 2005
  • A process map has been developed, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal bar. Bonding mechanism between Cu and Ti was assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding was developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. Finite element analyses for extrusion of Cu-Ti bimetal bars were performed for various process conditions. The deformation history at the contact surface was traced and the proposed new bonding criterion was applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the extrusion of Cu-Ti bimetal bar is suggested.

  • PDF

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • Park, Hun-Jae;Na, Gyeong-Hwan;Jo, Nam-Seon;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • 박훈재;나경환;조남선;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.140-143
    • /
    • 1997
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding, the normal pressure and the contact surface expansion are selected as process parameters governing the bonding condition. The critical pressure required for the bonding at the interface is obtained by solving a "local extrusion" using a slip line meyhod. A viscoplastic finite element method is used to analyze the steady state extrusion process. The boundary profile of bi-metal rod is predicted by tracking a particle path adjacent to interface surface. The variations of contact surface area and the normal pressure along the interface profile are predicted and compared to those by experiments.

  • PDF

An Inspection System for Multilayer Co-Extrusion Blown Plastic Film Line (공압출 다층 플라스틱 필름 라인을 위한 결함 검사 시스템)

  • Hahn, Jong Woo;Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.45-51
    • /
    • 2012
  • Multilayer co-extrusion blown film construction is a popular technique for producing plastic films for various packaging industries. Automated detection of defective films can improve the quality of film production process. In this paper, we propose a film inspection system that can detect and classify film defects robustly. In our system, first, film images are acquired through a high speed line-scan camera under an appropriate lighting system. In order to detect and classify film defects, an inspection algorithm is developed. The algorithm divides the typical film defects into two groups: intensity-based and texture-based. Intensity-based defects are classified based on geometric features. Whereas, to classify texture-based defects, a texture analysis technique based on local binary pattern (LBP) is adopted. Experimental results revealed that our film inspection system is effective in detecting and classifying defects for the multilayer co-extrusion blown film construction line.

Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires (구리-타이타늄 복합선재의 번들압출 성형특성)

  • Lee, Y.S.;Kim, J.S.;Yoon, S.H.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

Development of A Process Map for Bundle Extrusion of Cu- Ti Bimetal Wires (구리-타이타늄 이중미세선재 번들압출의 공정지도 개발)

  • Kim J. S.;Lee Y. S.;Yoon S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.393-397
    • /
    • 2005
  • A process map has been developed, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion fur pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

  • PDF

Process Conditions for Low Bonding Strength in Pressure Welding of Cu-Al Plates at Cold and Warm Temperatures (Cu-Al 판재의 냉간 및 온간 압접에서 낮은 접합강도를 갖는 공정 조건에 관한 연구)

  • 심경섭;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.623-628
    • /
    • 2004
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism during the cold and warm forming such as clad extrusion or bundle extrusion/drawing. Bonding characteristics between the Cu and Al plates by pressure welding are investigated focusing on the weak bonding. Experiments are performed at the cold and warm temperatures ranging from the room temperature to $200^{\circ}C$. The important factors examined in this work are the welding pressure, pressure holding time, surface roughness, and temperature. A bonding map, which can identify the bonding criterion with a weak bonding strength of IMPa , is proposed in terms of welding pressure and surface roughness fur the cold and warm temperature ranges.

Prediction of the Brittle Damage Evolution in Extrusion/Forging Die (압출/단조 금형의 취성결함성장예측)

  • 여은구;이용신;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.220-223
    • /
    • 1998
  • The failure of die often occurs as a result of growth of microcracks - referred as a brittle damage. In this study, an analysis of brittle damage evolution cupled with elastic finite element analysis of die deformation is presented. A local transformation from the tractions of a workpiece mesh to those of a die mesh is developed. The brittle damage is defined as a vector considering the shape of common microcracks in the brittle metals and the damage function suggested by Krajcinovic is utillized. Applications of the proposed model to modeling damage evolution in the extrusion die and forging die are given and the characteristics of brittle damage evolution in die are in detail examined.

  • PDF

A modified technique for extraoral cementation of implant retained restorations for preventing excess cement around the margins

  • Yuzbasioglu, Emir
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.146-149
    • /
    • 2014
  • The major drawback of cement-retained restorations is the extrusion of the excess cement into the peri-implant sulcus, with subsequent complications. Insufficient removal of the excess cement may initiate a local inflammatory process, which may lead to implant failure. This article presents a method of controlling cement flow on implant abutments, minimizing the excess cement around implant-retained restorations.