• Title/Summary/Keyword: Loads Analysis

Search Result 4,963, Processing Time 0.03 seconds

Validation of Loads Analysis for a Slowed Rotor at High Advance Ratios

  • Park, Jae-Sang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.498-511
    • /
    • 2017
  • This work conducts a validation study for loads analysis of the UH-60A slowed rotor at high advance ratios. The nonlinear flexible multibody dynamics analysis code, DYMORE II, is used with a freewake model for the rotorcraft comprehensive analysis. Wind tunnel test data of airloads and structural loads of a full-scale UH-60A slowed rotor are used for this validation study. This analysis predicts well the thrust reversal phenomenon at the advance ratio of 1.0. The section airloads such as normal forces and pitching moments and the oscillatory blade structural moments in this analysis are compared well or moderately with the measured data, although the higher harmonics components of blade torsion moments are not captured well. This validation study assesses the prediction accuracy and investigates the unique aeromechanics characteristics of a slowed rotor at high advance ratio.

Numerical Analysis for Dynamic Response of Railway Plate Girder Bridges according to Types of Train (판형교의 열차유형별 동적응답에 대한 수치해석)

  • 오지택;박문석;최진유
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.310-315
    • /
    • 2001
  • In this study, railway plate girder bridges are modeled in detail for finite elements within 3-dimension and analyzed by SAP 2000N, a commercial finite element analysis tool. Especially, loads of trains gained by statistical averages of measured true loads of trains are used for analysis. When the loads are adapted, the numerical dynamic responses are very close to real measurements. Resonant speed areas by train types are evaluated from the results of numerical analyses by different driving speeds of trains. For dynamic numerical analysis of railway bridges, reasonable guides are also discussed.

  • PDF

Analysis of Group Walking Loads by System Identification of Building Structures (건축구조물의 시스템 식별을 통한 무리보행의 해석)

  • 김태호;민경원;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.267-274
    • /
    • 2003
  • The objective of this study is to estimate the frequency characteristics of group walking loads based on the information of measured responses. At first, dynamic properties such as natural frequencies and modes are obtained from input/output relation for building structures by heel drop test. Second, a method to estimate group walking loads by the transfer functions from measured responses to group walking loads is proposed. The method turned out to estimate the group walking loads accurately. Higher modes could be important in estimating the amplitude of group walking loads with the information of single walking load.

  • PDF

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

Methodology to Determine Sign for the Most Conservative 3-D Nozzle Loads (3차원 노즐로드 보수적 하중 조건 결정을 위한 하중 부호 결정 방법론)

  • Kyoung Chan Yoo;Ki Wan Seo;Hyun Seok Song;Yun Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • When performing stress analysis for a nozzle in nuclear power plants, the nozzle loads should be determined conservatively. Existing stress analysis report of 3-D nozzle loads in nuclear power plants often provide only load magnitude not the sign (direction). Since calculated stress distribution depends on load direction, determining critical load directions for conservative stress analysis is crucial. In this study, an efficient method for determining critical load directions in nozzle loads is proposed. In the proposed method, stresses are firstly calculated using elastic finite element (FE) analysis for the uni-axial load in each direction. Then stress distributions for the multi-axial loads are analytically calculated using the principle of superposition. The calculated stress values are verified by comparing with FE analysis results under multi-axial loading. By using this method, the complex task of determining conservative load directions can be simplified.

Vibration Velocity Response of Buried Gas Pipelines according to Train Speed (지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성)

  • Kim, Mi-Seung;Sun, Jin-Sun;Kim, Gun;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

Nonlinear FEM Analysis for Strength Characteristics of L-shaped Walls with Different Load-directions (가력방향이 다른 L형 벽체의 내력특성 평가를 위한 비선형 FEM 해석)

  • 조남선;하상수;최창식;오영훈;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.443-448
    • /
    • 2002
  • The cross sections of structural walls have various shapes such as T, L, and H-shaped. The L-shaped walls frequently appear in the comer of the structural plans. There are a little researches on the structural performance of L-shaped walls subjected to hi-directional loads. L-shaped wall subjected to hi-directional loads might be failed due to high compressive stress in the corner of the wall. L-shaped wall subjected to bi-directional(45$^{\circ}$ direction) loads was failed by the compressive failure more possible than that of one-directional(0$^{\circ}$ direction) loads. Therefore, in this paper, Two L-shaped wall specimens are chosen and presented. One is LCU specimen subjected to the bi-directional loads, the other is LCX specimen subjected to the one-directional loads. Also, the experimental results compared with the analytical results from nonlinear FEM analysis.

  • PDF

Probabilistic analysis of buckling loads of structures via extended Koiter law

  • Ikeda, Kiyohiro;Ohsaki, Makoto;Sudo, Kentaro;Kitada, Toshiyuki
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.167-178
    • /
    • 2009
  • Initial imperfections, such as initial deflection or remaining stress, cause deterioration of buckling strength of structures. The Koiter imperfection sensitivity law has been extended to describe the mechanism of reduction for structures. The extension is twofold: (1) a number of imperfections are considered, and (2) the second order (minor) imperfections are implemented, in addition to the first order (major) imperfections considered in the Koiter law. Yet, in reality, the variation of external loads is dominant over that of imperfection. In this research, probabilistic evaluation of buckling loads against external loads subjected to probabilistic variation is conducted by extending the concept of imperfection sensitivity. A truss arch subjected to dead and live loads is considered as a numerical example. The mechanism of probabilistic variation of buckling strength of this arch is described by the proposed method, and its reliability is evaluated.

Analysis of Shell Structures Subjected to Deformation Dependent Pressure Load (변형종속 압력하중을 받는 셸구조물의 해석)

  • Jang, Myung-Ho;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.93-102
    • /
    • 2002
  • Pressure loads caused by gas, water and wind are the most important load cases in structural analysis. Often the pressure loads are approximated by constant directional loads since it is difficult to evaluate the exact value. However, the pressure load is defined as a displacement dependent one and it is necessary to consider the follower effects of the load in analysis procedure. In this study, the large deformation analysis considering geometrical nonlinearity for shell structures under pressure loads is presented. Finite element by using a three-node flat triangular shell element is formulated and the follower effects of the pressure load are included in the formulation. Some of results are presented for cantilevered beam under uniform external pressure and thin circular ring under non-uniform external pressure. The present results are in good agreement with the results available in existing literature and commercial software ABAQUS.

  • PDF

Effects of dead loads on the static analysis of plates

  • Takabatake, Hideo
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.761-781
    • /
    • 2012
  • The collapse of structures due to snow loads on roofs occurs frequently for steel structures and rarely for reinforced concrete structures. Since the most significant difference between these structures is related to their ability to handle dead loads, dead loads are believed to play an important part in the collapse of structures by snow loads. As such, the effect of dead loads on displacements and stress couples produced by live loads is presented for plates with different edge conditions. The governing equation of plates that takes into account the effect of dead loads is formulated by means of Hamilton's principle. The existence and effect of dead loads are proven by numerical calculations based on the Galerkin method. In addition, a closed-form solution for simply supported plates is proposed by solving, in approximate terms, the governing equation that includes the effect of dead loads, and this solution is then examined. The effect of dead loads on static live loads can be explained explicitly by means of this closed-form solution. A method that reflects the effects of dead loads on live loads is presented as an example. The present study investigates an additional factor in lightweight roof structural elements, which should be considered due to their recent development.