• 제목/요약/키워드: Loading tests

검색결과 2,310건 처리시간 0.027초

MODEL TESTS ON LEVEES REINFORCED WITH SHEET PILES UNDER HIGH WATER CONDITIONS WITH/WITHOUT SEISMIC LOADING HISTORY

  • Koseki, Junichi;Tanaka, Hiroyuki;Otsushi, Kazutaka;Nagao, Naoya;Kaneko, Masaru
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.49-54
    • /
    • 2010
  • In order to study the performance of levees reinforced with steel sheet piles under high water condition, a series of model tests was conducted by simulating the high water condition before and after applying severe seismic loading history. As a result, the seepage behavior through the subsoil layers underlying the levee was not significantly affected by the seismic loading history. It was also verified that, irrespective of the seismic loading history, the sheet piles installed at the levee crest or shoulder are effective in preventing the breakage of levees caused by overflow. In addition, applicability of drainage works at the foot of the levee in preventing the seepage failure was confirmed.

  • PDF

근접굴착 시 벽체에 선행하중 재하에 따른 터널의 거동 (Behavior of tunnel under the influence of pre-loading on braced wall during the adjacent ground excavation)

  • 김일;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제9권4호
    • /
    • pp.331-341
    • /
    • 2007
  • 기존터널에 근접 굴착 할 때 발생하는 흙막이벽체의 수평변위를 억제시키기 위해 버팀대에 선행하중을 가했다. 이러한 목적으로 흙막이벽체에 큰 선행하중을 가할 수 있는 새로운 선행하중 시스템을 모형시험에 적용하였다. 대형 시험은 폭 2.0m, 높이 6.0m, 길이 4.0m인 모형 토조에서 수행하였고 시험지반은 모래로 조성하였다. 직경 1.2m인 모형 터널은 시험지반 굴착 전에 설치하고 지반을 조성한 후에 모형터널에 근접해서 흙막이벽체를 설치하고 시험지반을 굴착하면서 모형 터널과 흙막이벽체 및 지반의 거동을 측정하였다. 이때에 선행하중 재하효과를 확인하기 위하여 선행하중을 가하지 않는 시험은 물론 선행하중을 가하여 흙막이벽체의 수평변위를 억제하는 시험을 실시하였고 수치해석을 실시하여 대형 시험결과와 비교하였다. 그 결과 선행하중을 설계축력 이상으로 적용시켜 흙막이벽체의 수평변위를 감소시켰을 때 벽체 배면에 있는 기존 터널의 안정성이 크게 향상되는 것을 확인할 수 있었다.

  • PDF

Current and voltage loading tests off resistive SFCL

  • 최효상;현옥배;김혜림;황시돌;박권배
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.241-246
    • /
    • 2002
  • We have performed the current and voltage loading tests of resistive superconducting fault current limiters (SFCLS) based on $YBa_2$$Cu_3$$O_{7}$(YBCO) films with the diameter of 2 inch. The SFCL consists of meander-type YBCO stripes covered with 200 nm Au layer grown in situ for current shunt and heat dispersion at hot spots. The minimum quench current of an SFCL unit was about 25 Apeak. Seven SFCL units were connected in parallel fur the current load ing tests at power source of 100 $V_{rms}$ $/2,000A_{rms}$. This SFCL units had maximum limiting current of 170 Apeak during the fault instant and then successfully controlled the fault current below 100 Apeak within 1~2 msec after short circuit. Increased short current also reduced the quench completion time with little change of current limiting characterization. We connected six SFCL units in series fur the voltage loading tests at power source of $1,200 V_{rms}$/170 $A_{rms}$ at this time. The shunt resistors were inserted into each SFCL unit to eliminate power imbalance originated from serial connection of SFCL units. Each SFCL unit was quenched simultaneously during the fault condition. The current increased up to 40 $A_{peak}$ and decreased to 14 $A_{peak}$ after 3 cycles. Quench was completed within 1 msec after the fault. We confirmed operating characteristics of 140 kVA($120 A_{rms}$ $\times$ 1,200 $V_{rms}$) SFCL and presented the manufacturing possibility of 3.3 kV SFCL using 4 inch YBCO films.BCO films.lms.

  • PDF

재구성 점토의 반복전단강도 및 전단탄성계수의 재하 주파수 의존성 (Loading Frequency Dependencies of Cyclic Shear Strength and Elastic Shear Modulus of Reconstituted Clay)

  • 이시가키 시게나오;연규석;김용성
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.73-79
    • /
    • 2010
  • In the present study, the loading frequency dependencies of cyclic shear strength and elastic shear modulus of reconstituted clay were examined by performing undrained cyclic triaxial tests and undrained cyclic triaxial tests to determine deformation properties. The result of undrained cyclic triaxial test of reconstituted and saturated clay shows that a faster frequency leads to higher stress amplitude ratio, but when the frequency becomes fast up to a certain point, the stress amplitude ratio will reach its maximum limit and the frequency dependence becomes insignificant. And also, the result of undrained cyclic triaxial deformation test shows a fact that a faster loading frequency leads to higher equivalent shear modules and smaller hysteresis damping ratio, and confirms the frequency dependence of cohesive soil. Meanwhile, the result of the creep test shows that continuing creep is created in the undrained cyclic triaxial test with slow loading frequency rate, and since loading rate becomes slower at the vicinity of the maximum and the minimum deviator stress due to sine wave loading, the vicinity of the maximum and the minimum deviator stress shall be more influenced by creep.

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

Time-dependent behaviour of interactive marine and terrestrial deposit clay

  • Chen, Xiaoping;Luo, Qingzi;Zhou, Qiujuan
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.279-295
    • /
    • 2014
  • A series of one-dimensional consolidation tests and triaxial creep tests were performed on Nansha clays, which are interactive marine and terrestrial deposits, to investigate their time-dependent behaviour. Based on experimental observations of oedometer tests, normally consolidated soils exhibit larger secondary compression than overconsolidated soils; the secondary consolidation coefficient ($C_{\alpha}$) generally gets the maximum value as load approaches the preconsolidation pressure. The postsurcharge secondary consolidation coefficient ($C_{\alpha}$') is significantly less than $C_{\alpha}$. The observed secondary compression behaviour is consistent with the $C_{\alpha}/C_c$ concept, regardless of surcharging. The $C_{\alpha}/C_c$ ratio is a constant that is applicable to the recompression and compression ranges. Compared with the stage-loading test, the single-loading oedometer test can evaluate the entire process of secondary compression; $C_{\alpha}$ varies significantly with time and is larger than the $C_{\alpha}$ obtained from the stage-loading test. Based on experimental observations of triaxial creep tests, the creep for the drained state differs from the creep for the undrained state. The behaviour can be predicted by a characteristic relationship among axial strain rate, deviator stress level and time.

The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

  • Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1096-1110
    • /
    • 2014
  • Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동 (Part I: 균열닫힘 거동 상세) (Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part I : Details of crack Closure Behavior))

  • 이신영;송지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.79-84
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are Investigated by performing narrow- and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks.

  • PDF

Effect of loading frequency and clay content on the dynamic properties of sandy-clay mixtures using cyclic triaxial tests

  • Alireza Hasibi Taheri;Navid Hadiani;S. Mohammad Ali Sadredini;Mahmood Zakeri Nayeri
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.317-328
    • /
    • 2024
  • Adopting a rational engineering methodology for building structures on sandy-clay soil layers has become increasingly important since it is crucial when structures erected on them often face seismic and cyclic wave loads. Such loads can cause a reduction in the stiffness, strength, and stability of the structure, particularly under un-drained conditions. Hence, this study aims to investigate how the dynamic properties of sand-clay mixtures are affected by loading frequency and clay content. Cyclic triaxial tests were performed on a total of 36 samples, comprising pure sand with a relative density of 60% and sand with varying percentages of clay. The tests were conducted under confining pressures of 50 and 100 kPa, and the samples' dynamic behavior was analyzed at loading frequencies of 0.1, 1, and 4 Hz. The findings indicate that an increase in confining pressure leads to greater inter-particle interaction and a reduced void ratio, which results in an increase in the soil's shear modulus. An increase in the shear strength and confinement of the samples led to a decrease in energy dissipation and damping ratio. Changes in loading frequency showed that as the frequency increased, the damping ratio decreased, and the strength of the samples increased. Increasing the loading frequency not only reflects changes in frequency but also reduces the relative permeability and enhances the resistance of samples. An analysis of the dynamic properties of sand and sand-clay mixtures indicates that the introduction of clay to a sand sample reduces the shear modulus and permeability properties.