• Title/Summary/Keyword: Loading quantity

Search Result 155, Processing Time 0.029 seconds

Initial Ship Allocation for the Fleet Systematization (선단구성을 위한 초기배선)

  • 이철영;최종화
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 1984
  • The economical property of a shipping enterprise, as well as other transportation industries, is determined by the difference between the freight earned and expense paid. This study can be regarded as a division of optimizing ship allocation to routes under the integrated port transport system. Fleet planning and scheduling require complicated allocations of cargoes to ships and ships to routes in order to optimize the given criterion function for a given forecast period. This paper deals with the optimum ship allocation problem minimizing the operating cost of ships in a shipping company. Optimum fleet operating for a shipping enterprise is very important, since the marine transportation is a form of large quantity transport requiring long-term period, and there is a strong possibility to bring about large amount of loss in operation resulting from a faulty ship allocation. Where there are more than one loading and discharging ports, and a variety of ship's ability in speed, capacity, operating cost etc., and when the amount of commodities to be transported between the ports has been determined, then the ship's schedule minimizing the operating cost while satisfying the transport demand within the predetermined period will be made up. First of all a formula of ship allocation problems will be established and then will be constructed to solve an example by the Integer Programming application after consideration of the ship's ability, supply and demand of commodity, amount of commodity to be transported, operating costs of each ship etc. This study will give good information on deciding intention for a ship oprator or owner to meet the computerization current with shiping management.

  • PDF

The optimum pattern recognition and classification using neural networks (신경망을 이용한 최적 패턴인식 및 분류)

  • Kim, J.H.;Seo, B.H.;Park, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.92-94
    • /
    • 2004
  • We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.

  • PDF

A Study on the Riser Fatigue Analysis Using a Quarter-modal Spectrum (사봉형 스펙트럼을 이용한 라이저 피로해석 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.514-520
    • /
    • 2016
  • Oil and gas production riser systems need to be designed considering a wide band quarter-modal analysis which contains low-, wave-, VIV(Vortex induced vibration) frequencies. The VIV can be separated into cross-flow(CF) and in-line(IL) components. In this study, the various idealized tri- and quarter-modal spectra are suggested to analyze fatigue damage on the production riser system. In order to evaluate the fatigue damage increment caused by the IL's motion, tri- and quarter-modal spectral fatigue damages are calculated in time domain. And the fatigue damage calculated from two different modal spectra are compared quantitatively. Then the suitability of existent wide band fatigue damage models for quarter modal spectrum was evaluated by comparison of frequency domain calculation and time domain calculation. The result show that although spectral density of IL motion is not remarkable in quantity, the effect on the fatigue damage is significant and existent fatigue damage models are not adequately estimating damage by quarter-modal spectra.

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

A Study on the Analysis of Surface Characteristics According to intermittent Ratio of Discontinuous Grinding Wheel with Multi-Porous Grooves (다기공 연삭숫돌의 단속비에 의한 표면특성 분석에 관한 연구)

  • Kim, Jeong-Du;Kang, Youn-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.44-51
    • /
    • 1997
  • Crinding of stainless steel, aluminium alloy, copper alloy, and titanium alloy are difficult to obtain high quality finish, because they have the mechanical properties such as low hardness, high toughness. The low hardness and the high toughness result in the loading of wheel and the poor surface finish. In order to perform the grinding operations for these sorts of materials easily, the discontinuous grinding wheel wiht multi-porous grooves has been newly developed. The multi-porous grooves inthe discontinuous grinding wheel were formed during grinding wheel manufacturing process. In this paper, discontinuous grinding wheels having intermittent ratio 0.66, 0.81 and number of grooves 18,32 have been manufactured and grinding surface characteristics of these grinding wheels for SUS304 have been analyzed. Discontinuous grinding temperature according to intermittent ratiohas been also estimated by simulation. The discontinuous grinding wheels increase the grinding performance considerably. It is desirable to use the discontinuous grinding wheel in grinding the materials with high efficiency and accuracy.

  • PDF

The study on the survival rates and crestal bone changes around the implants (임플란트 주위 골변화와 생존율에 대한 연구)

  • Choi, Hyun-Suk;Chung, Hyun-Ju;Kim, Ok-Su;Kim, Young-Jun
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.303-315
    • /
    • 2004
  • The success and failure of dental implants depends on various factors such as patient's systemic status, quantity and quality of surrounding bone, presence or absence of marginal infection and mechanical loading condition. The measurement of crestal bone changes around the implants is implemental to evaluate the success and long-term prognosis of the implant. This study was to evaluate the cumulative survival rate of the implants which had been placed in the Department of Periodontics, Chonnam National University Hospital between 1992 and 2003, and to observe the crestal bone loss around the implants which had at least 2 consecutive periapical radiographs after connecting the transmucosal abutment. The radiographs were scanned and digitalized, and the crestal bone levels on the mesial and distal surface of implants were measured using Image analyzer (Image Pro Plus, Media Cybernetics, USA), immediately after implant placement, at 2nd surgery, and 3 months, 6 months, 1 year, and every year thereafter. Any bone loss was not observed during the period between the 1stand 2nd surgery, and the bone loss was 0.86 ${\pm}$ 0.92 mm for the first year of loading after connecting the transmucosal abutment. After 1 year of loading, annual bone loss was 0.1 ${\pm}$ 0.27 mm, and total bone loss was 0.90 ${\pm}$ 0.80 mm (during the average follow-up periods of 22.5 ${\pm}$ 25.6 Mos), The implant, with smooth surface, in the mandible, and with the fixed bridge prosthesis showed greater bone loss, compared to those, with the rough surface, in the maxilla and with single crown. In systemically diseased patients (including DM or osteoporosis), the greater bone loss was observed. The cumulative survival rate among 432 implants was 94.10% for 7 years. Among 15 failed implants, 9 implants were removed due to mobility from disintegration of bone-implant interface. From this results, crestal bone loss around the implants were greatest during 1 year after transmucosal abutment connection, and various factors could affect peri-implant bone loss. To prevent and predict the bone loss around the implants and improve the prognosis, further comprehensive maintenance and follow-up schedules are required.

AN EVALUATION OF THE PRIMARY IMPLANT STABILITY AND THE IMMEDIATE LOAD-BEARING CAPACITY ACCORDING TO THE CHANGE OF CORTICAL BONE THICKNESS (치밀골 두께 변화에 따른 임플랜트 1차안정성과 즉시하중부담능 평가)

  • Yi Yang-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.248-257
    • /
    • 2005
  • Statement of problem. Cortical bone plays an important role in the primary implant stability, which is essential to immediate/early loading. However, immediate load-bearing capacity and primary implant stability according to the change of the cortical bone thickness have not been reported. Purpose. The objectives of this study were (1) to measure the immediate load-bearing capacity of implant and primary implant stability according to the change of cortical bone thickness, and (2) to evaluate the correlation between them. Material and methods.48, screw-shaped implants (3.75 mm$\times$7 mm) were placed into bovine rib bone blocks with different upper cortical bone thickness (0-2.5 mm) and resonance frequency (RF) values were measured subsequently. After fastening of healing abutment. implants were subjected to a compressive load until tolerated micromotion threshold known for the osseointegration and load values at threshold were recorded. Thereafter, RF measurement after loading, CT taking and image analysis were performed serially to evaluate the cortical bone quality and quantity. Immediate load-bearing capacity and RF values were analyzed statistically with ANOVA and post-hoc method at 95% confidence level (P<0.05). Regression analysis and correlation test were also performed. Results. Existence and increase of cortical bone thickness increased the immediate load-bearing capacity and RF value (P<0.05) With the result of regression analysis, all parameter's of cortical bone thickness to immediate load-bearing capacity and resonance frequency showed significant positive values (P<0.0001). A significant high correlation was observed between the cortical bone thickness and immediate load-beating capacity (r=0.706, P<0.0001), between the cortical bone thickness and resonance frequency (r=0.753, P<0.0001) and between the immediate load-bearing capacity and resonance frequency (r=0.755, P<0.0001). Conclusion. In summary, cortical bone thickness change affected the immediate load-baring capacity and the RF value. Although RF analysis (RFA) is based on the measurement of implant/bone interfacial stiffness, when the implant is inserted stably, RFA is also considered to reflect implant/bone interfacial strength of immediately after placement from high correlation with the immediate load-baring capacity. RFA and measuring the cortical bone thickness with X-ray before and during surgery could be an effective diagnosis tool for the success of immediate loading of implant.

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

Use of Drainage Water as Irrigation Resource in the Paddy Field to Mitigate Non-point Source Pollutants (배수로 물 관개 벼농사의 비점오염원 경감효과)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-Yeol;Park, Sung-Tae;Ku, Yeon-Chung;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.107-115
    • /
    • 2007
  • Objective of this study was to assess the efficient rice cultivation practice to mitigate the non-point source pollutants loading to the adjacent watershed. Cultivation practices consisted of machine transplanting, direct seeding on dry paddy, and no tillage in which no fertilizer and pesticide were applied to paddy field. Water in drainage canal was used as irrigation source during the entire rice growing season. Loading of the non-point source pollutants to the adjacent small stream was mitigated by all treatments. Rice yield, total biomass (rice + weeds), and uptake T-N, $P_2O_5$, and $K_2O$ were higher in machine transplanting practice than those in direct seeding and no tillage practices. However, the purification effects of non-point source pollutants were followed in orders of no tillage > direct seeding > machine transplanting due to quantity of irrigation water. The annual purification quantity of T-N, T-P, and K by rice cultivations ranged from 46 to 369 kg $ha^{-1}$, 4.1 to 16.4 kg $ha^{-1}$, and 55 to 238 kg $ha^{-1}$, respectively, during the entire rice growing season. Results revealed that no tillage practice of rice cultivation was the best management option in reducing the loading of the non-point source pollutants from the drainage canal into stream.

Water Quality Modeling of Juam Lake by Fuzzy Simulation Method (퍼지 Simulation 방법에 의한 주암호의 수질모델링)

  • Lee, Yong Woon;Hwang, Yun Ae;Lee, Sung Woo;Chung, Seon Yong;Choi, Jung Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.535-546
    • /
    • 2000
  • Juam lake is a major water resource for the industrial and agricultural activities as well as the resident life of Kwangju and Chonnam area. However, the water quality of the lake is getting worse due to a large quantity of pollutant inflowing to the lake. As a preliminary step in making the countermeasure to achieve the water quality goal of the lake. it is necessary to understand how the water quality of the lake will be in future. Several computer programs can be used to predict the water quality of lake. Each of these programs requires a number of input data such as hydrological and meteorological data. and the quantity of the pollutant inflowed. but some or most of the input data contain uncertainty. which eventually results in the uncertainty of prediction value (future level of water quality). Generally. the uncetainty stems from the lack of information available. the randomness of future situation. and the incomplete knowledge of expert. Thus. the purpose of this study is to present a method for representing the degree of the uncertainty contained in input data by applying fuzzy theory and incorporating it directly into the water quality modeling process. By using the method. the prediction on the future water quality level of Juam lake can be made that is more appropriate and realistic than the one made without taking uncertainty in account.

  • PDF