• Title/Summary/Keyword: Loading point

Search Result 1,124, Processing Time 0.029 seconds

The stress field in the body by tangential loading of a rectangular patch on a semi-infinite solid (반 무한체 위의 사각조각 면에 작용하는 접선하중에 의한 반 무한체내의 응력 해석)

  • 이문주;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.20-29
    • /
    • 1999
  • The stress field in the body by tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using Boussinesque's potential function. Its validity was proved by saint-venant's principle in remote region of the and in the vicinity of the surface with superposition of point loads.

  • PDF

Performance of structural-concrete members under sequential loading and exhibiting points of inflection

  • Jelic, I.;Pavlovic, M.N.;Kotsovos, M.D.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.99-113
    • /
    • 2004
  • The article reports data on, and numerical modelling of, beams exhibiting points of inflection and subjected to sequential loading. Both tests and analysis point to inadequacies in current codes of practice. An alternative design methodology, which is strongly associated with the notion that contraflexure points should be designed as "internal supports", is shown to produce superior performance even though it requires significantly less secondary reinforcement than that advocated by codes.

A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands (사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF

Test and evaluation of a large scale composite rotor blade for wind turbine (풍력발전용 대형 복합재 회전날개의 구조시험 및 평가에 관한 연구)

  • ;;;Y. Sugiyama
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.91-94
    • /
    • 2001
  • A structural test of the wind turbine rotor blade must be required to evaluate the uncertainty in design assessment due to use of material, design concepts, production processes and so on, and the possible impact on the structural integrity. In the full-scale static strength test, the measuring parameters are strain, displacements, loads, weight and the center of gravity. There are test equipments, measuring sensors, a test rig and fixtures to obtain measuring parameters. In order to simulate the aerodynamics load, the three-point loading method instead of the one-point loading method is applied. There is slightly some difference between the measured results and the predicted results with the reference fiber volume fraction of 60%. However, the agreement between the measured results and the predicted results with the actual fiber volume fraction of 52.5% is good. Even though a slightly non-linearity from 80% loading to 100% loading, a linear static solution is sufficient for the design purpose as the amount of the non-linearity is relatively small. Comparison between measured and predicted strain results at the maximum thickness positions of the blade profile for 0.236R(5.56m), 0.493R(11.59m) and 0.574R(13.43m), under 20%, 40%, 60%, 80% and 100% loadings for the upper part of the blade. The predicted values are in good agreement with the measured values.

  • PDF

Rotational capacity of pre-damaged I-section steel beams at elevated temperatures

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.53-66
    • /
    • 2017
  • Structures submitted to Fire-After-Earthquake loading situations, are first experiencing inelastic deformations due to the seismic action and are then submitted to the thermal loading. This means that in the case of steel framed structures, at the starting point of the fire, plastic hinges have already been formed at the ends of the beams. The basic objective of this paper is the evaluation of the rotational capacity of steel I-section beams damaged due to prior earthquake loading, at increased temperatures. The study is conducted numerically and three-dimensional models are used in order to capture accurately the nonlinear behaviour of the steel beams. Different levels of earthquake-induced damage are examined in order to study the effect of the initial state of damage to the temperature-evolution of the rotational capacity. The study starts with the reference case where the beam is undamaged and in the sequel cyclic loading patterns are taken into account, which represent earthquakes loads of increasing magnitude. Additionally, the study extends to the evaluation of the ultimate plastic rotation of the steel beams which corresponds to the point where the rotational capacity of the beam is exhausted. The aforementioned value of rotation can be used as a criterion for the determination of the fire-resistance time of the structure in case of Fire-After-Earthquake situations.

A Study on the Stability Boundaries for Single Layer Latticed Domes under Combined Loads (조합하중을 받는 단층 래티스 돔의 안정경계에 관한 연구)

  • 한상을;이갑수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.85-91
    • /
    • 2000
  • The smallest value of the load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arches were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

A Study on the Mathematical Interpretation o Hydraulic Behaviour in Packing Tower (충전탑에서 수력학적 거동의 수학적 해석 연구)

  • 김석택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2001
  • This study was carried out to interpret mathematically hydraulic behaviour in packing tower which packed 50 mm plastic Hiflow-ring with a dimension of 300 mm wide and 1,400 mm high. In view of energy saving, the recent packing. 50 mm plastic Higlow-ring was superior to conventional packings because of low pressure drop in high loads. As relative error between numerically predicted and experimentally obtained values was less then 6% in the loading and flooding point, it found that therir results appeared to be adequate. Comparison of hose two values in both dry and wet packing conditions. relative errors amount to 3.96 and 5.6%, respectively. In order to evaluate the operating characteristics of packing, the type, size, and material for packings must be estimated in various system and loads. This study is able to calculated pressure drop, hold-up, gas and liquid loads using mathematical interpretation. For these calculation, the specific constants of each packings must be calculated first all. The method of mathematical interpretation in this study turned out to be superior to the existing methods because of reduced errors at loading and flooding point.

  • PDF

A Study on Hydraulic Behavior and Desorption of $CO_2$ Gas in the Counter-current Packing Tower (역류식 충전탑에서 이산화탄소 탈착과 수력학절 거동에 관한 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.94-100
    • /
    • 2000
  • This study was carried out to interpret hydraulic behavior and CO2 gas desorption in counter-current packing tower which packed 50mm plastic Hiflow-ring. The results are as follow : To compare with conventional packing, 50mm Hiflow-ring could save energy because of low pressure drop under high load. As relative error between calculated value and investigated value was less than 6% in the loading point and flooding point we found that we are predict results mathematically which occur in packing tower. The unique magnitude of packing which was used are as follows. $C_L=2.1{\times}10^{-4}$, n=0.787 so we can predict efficiency which occur

  • PDF

Application of GWLF Model to Predict Watershed Pollutant Loadings (오염부하량 산정을 위한 GWLF 모형의 적용)

  • Jang, Jung-Seok;Lee, Nam-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.77-88
    • /
    • 2001
  • In order to evaluate the applicability of GWLF model which can efficiently estimate non-point and point source pollutant loadings in rural watershed including urban district, the model was applied to an experimental watershed. The model was calibrated using observed data such as daily runoffs, sediment yields, T-N, and T-P. Simulated daily runoffs and sediment yields by the model using calibrated parameters were in food agreement with the observed data. There were difference between the simulated and observed nutrient loading which was considered resonable. The simulated results by the model showed that T-N, T-P and sediment yields were dependent on the amount of stream runoff discharge and land use. GWLF model is believed to applicable to estimate amount of pollutant loading of non-point source pollution for the water qualify control of agricultural watersheds.

  • PDF

Water Quality Modeling and Environmantal Capacity in the Seom River Basin (섬강유역 환경용량 및 수질 Modeling)

  • 허인량;오근찬;최지용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.80-86
    • /
    • 1998
  • Seom River was major branch of Namhan river, consist of primary basin that Wonjoo-city, Hoingsung-gun and primary contamination source was sewage from human lives. This study was evaluated production contamination loading of each branch basin and water quality grade and water quality simulation by QUAL2E to provide efficient contaminations source control. Rusult of survey, production loading of BOD, T-N, T-P were 26,591 kg/day, 4,560 kg/day, 731 kg/day resectively. Water quality analysis in 17 points of main stream were appeared that 1st grade(BOD 1 mg/l under) was 6 point, 2nd grade was 9 point and 3rd grade was 2 point. And result of water quality analysis for branch steram, first grade was evaluated 68.7%. Based of field data, calibration and verification result were in good agreement with mesured value within coefficient of variance were from 2.59% to 18.73%, from 6.39%, to 28.46%, respectively.

  • PDF