• Title/Summary/Keyword: Loading point

Search Result 1,130, Processing Time 0.033 seconds

A Comparative Study on Flexural Toughness of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 휨파괴 인성지수의 결정에 관한 비교 연구)

  • 구봉근;정경섭;김태봉;박종인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.69-74
    • /
    • 1991
  • This paper reviewed various methods of evaluating the toughness of fiber reinforced concrete materials by means of toughness indices and discussed the use of various multiples of first-crack deflection or first-crack secant compliance to define toughness indices. And a new method what is called effective toughness used to evaluate the toughness of steel fiber reinforced concrete. The proposed method determinded from the area below the load-deflection curve until deflection at the loading point becoms 1/150 of the span devided by the ligament area.

  • PDF

The Stress Field in a Body Caused by the Tangential Force of a Rectangular Patch on a Semi-Infinite Solid

  • Cho, Yong-Joo;Kim, Tae-Wan;Lee, Mun-Ju
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • The stress field in a body caused by the tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using a potential function. The validity of the results of this study was preyed by Saint-Venant's principle in the remote region and by the superposition of point loads in the vicinity of the surface.

  • PDF

Bending Creep and Creep Facture of Alumina under High-Temperature (알루미나의 고온 굽힘 크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

An Experimental Study on the Flexural Behavior of Long Span Spliced PSC Girder (장경간 Spliced PSC 거더의 휨거동에 관한 실험적 연구)

  • 심종성;오홍섭;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.519-524
    • /
    • 1999
  • A bulb-tee sectioned girder is proposed for long span bridge exceeding 40 meters. The proposed bulb-tee girder is developed by non-linear analysis process. This study investigates the structural behavior and efficiency of proposed bulb-tee sectioned girder using 1/2 scaled prototype beam specimen. Three specimens are tested under three point static loading system. The crack patterns, failure mode and ultimate load capacity of each specimen are reported in this paper and they are compared to each other.

  • PDF

Structural Behavior of Sandwich Panels with Polymer Concrete Facings (폴리머 콘크리트 샌드위치 패널의 구조적 거동)

  • 연규석;함형길;김관호;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.261-266
    • /
    • 1993
  • This study was performed to evaluate the flexural behavior of polymer concrete sandwich panels which was made of unsaturated polymer resin. Bending tests under 4point loading was conducted for the 8 type of sandwich panel with different core and facing thickness. Results show that Load-Deflection, shearing force- shear strain, moment strength - strain relationships were effected by core and facing thickness.

  • PDF

Bending Creep and Creep Fracture of Sintered Alumina under High-Temperature (알루미나의 고온 굽힘크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 1994
  • The creep behavior and creep fracture of sintered alumina at high temperature were investigated under four point flexural test. Steady-state creep behavior was observed at low bending stress and primary creep until fracture was observed at hish bending stress. The loading history of bending stress did not affect on steady-state creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep of alumina under high temperature by nucleation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF

Mechanical Properties of Specialty Cellulose Fiber Reinforced Concrete (특수 가공된 셀룰로오스섬유보강 콘크리트의 역학적 특성)

  • 원종필;박찬기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.307-312
    • /
    • 1999
  • This study has been performed to obtain the mechanical properties of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15${\times}$15${\times}$55mm. The effect of differing volume fraction (0.08%, 0.1%, 0.15%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural strength.

  • PDF

The Flexural Behavior of Reinforced Hwangtoh-Concrete Beams (황토와 슬래그를 첨가한 철근콘크리트 보의 휨 거동)

  • Kang Hong Ki;Yang Keun Hyeok;Hwang Hey Zoo;Chung Heon Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.149-152
    • /
    • 2004
  • This paper reports the results of experimental study on the effects of replacement level of hwangtoh or slag on the flexural behavior of reinforced hwangtoh-concrete beams. All the beams were singly reinforced with longitudinal bar ratio p=0.5pb and were tested under two-point top loading. The flexural strengths obtained from tests, such as initial cracking strength, serviceability strength, maximum strength, were compared with ACI 318-02.

  • PDF

Vibrational Behavior of Ship Springing and Its Prediction (선박의 Springing 진동 현상과 예측 방법)

  • 이수목;정건화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1055-1060
    • /
    • 2001
  • Springing phenomena of ships is introduced with its concept, research history and approach methodology. Being a hydroelasticity problem, non-linear vibration and stochastic process, springing was formulated and modeled in vibration point of view separating hydrodynamic force into system properties and excitation force. Both RAO and response spectrum as well as wave spectrum were presented as a case study of springing analysis for a flexible vessel with wide breadth. The effect of advance speed, heading angle and loading condition were investigated as parametric study. The results and observations showed availability of analysis for the prediction of the ship springing behavior.

  • PDF

Flexural Behavior of Polymer Mortar Permanent Forms Using Methyl Methacrylate Solution of Waste Expanded Polystyrene

  • Bhutta, M. Aamer Rafique;Tsuruta, Ken;Ohama, Yoshihiko
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • This experimental study examines the applicability of polymer mortar permanent forms using a methyl methacrylate (MMA) solution of waste expanded polystyrene (EPS) to develop effective recycling processes for the EPS, referring to the flexural behavior of a polymer-impregnated mortar permanent form with almost the same performance as commercial products. An MMA solution of EPS is prepared by dissolving EPS in MMA, and unreinforced and steel fiber-reinforced polymer mortars are mixed using the EPS-MMA-based solution as a liquid resin or binder. Polymer mortar permanent forms (PMPFs) using the EPS-MMA-based polymer mortars without and with steel fiber and crimped wire cloth reinforcements and steel fiber-reinforced polymer-impregnated mortar permanent form (PIMPF) are prepared on trial, and tested for flexural behavior under four-point (third-point) loading. The EPS-MMAbased PMPFs are more ductile than the PIMPF, and have a high load-bearing capacity. Consequently, they can replace PIMPF in practical applications.